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FOREWORD

This document is one of fou: manuals that constitute the final report
of the research project conducted under Contract No. DOT-HS-6-01300 for the
National Highway Traffic Safety Administration. Dr. John T. Fleck and
Mr. Frank E. Butler of J § J Technologies, Inc. served as Principal Investigator
and Project Engineer, respectively, during their earlier tenure as members of
the Calspan Transportation Research Department. Subsequently, Mr. Norman J.
DeLeys coordinated the efforts of Calspan and J § J Technologies, Inc., who
was retained as a subcontractor to maintain the continuity necessary to

preparation of the report.

The Contract Technical Monitor for this project was Dr. Lee Ovenshire

of the National Highway Traffic Safety Administration.

This report has been reviewed and approved by:

N
AY
1

~s o~ haidah 4 h .~ o~ -

Anthony L. Russo, Head
Transportation Research Department
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General Notation

Due to the large number of variables used to develop and derive
relationships in this volume specific notation 1s defined in the section where
1t 1s used. In many cases, variables which are defined in one section may have
a different definition in another section. For example, the symbol £ 1s used
for the shortest vector from origin to the plane, 1t 1s also a vector defining
the specified fixed distance in the fixed distance constraint, and it is also
used as the friction coefficient for the sliding constraint. The following is

a list of nomenclature which 1s used extensively throughout Volume I.

A Ellipsoid matrix
Dn Direction cosine matrix for the nth segment
{%J Constraint force on the nth segment applied at
joint g4
I Identity matrix
a;)& Unit vectors defining orthonormal inertial

reference system
M, Mass matrix of the nth segment

Total number segments

n Subscript used to define the nth arbitrary
segment
8 Constraint force (position, sliding and rolling)

Vector from ellipsoid center to ellipsoid surface

khj Location of 301nt.j in the local system of segment
n.

t Unit vector normal to a plane



Independent variable of integration

Vector p sition of the c.g. of segment n in
inertial reference

Inertia matrix for the nth segment

Angular velocity vector for the nth segment
in n's local coordinate system

X1



SECTION 1
INTRODUCTION

In 1970 Calspan Corporation (formerly Cornell Aeronautical Laboratory,
Inc.) began development of a mathematical model for simulating the three-
dimensional dynamic responses of a motor vehicle crash victim. Under the joint
sponsorship of the Motor Vehicle Manufacturers Association (MVMA) and the
National Highway Traffic Safety Administration (NHTSA), the original develop-
ment and validation of the program was accomplished in two phases (Ref. 1 and
2). Except for a special version of the Phase II crash victim simulation (CVS)
program created for the MVMA (Ref. 3), the next major developmental effort was
accomplished for the NHTSA and resulted i1n what was designated as the CVS-III

computer program (Ref. 4).

Recognizing the CVS-III as a potentially valuable tool for aiding
studies of crew member dynamics during ejection from high-speed aircraft, the
Air Force Aerospace Medical Research Laboratory (AFAMRL) sponsored the development
cf a special version of the program that formed the basis of the AFAMRL
"Articulated Total Body' model or ATB (Ref. 5). Later, the ATB model was updated

and some new features were added under another contract with the AFAMRL (Ref. 6).

This report documents work performed in the research project entitled
"Validation of the Crash Victim Simulator" under Contract No. DOT-HS-6-01300 with
the NHTSA which states the general objective as ''the development of the CVS to
a level that 1t can be used for a variety of rulemaking activities.'" A signifi-
cant goal was ''to conduct studies that specifically, quantitatively and validly
pertain to the Part 572 dummy in several realistic crash safety compliance test
situations." The project consisted of two principal areas of effort (1)
further development, improvement and refinement of the computer program,
culminating 1n a version designated as the CVS-IV, and (2) the performance of
detailed measurements and tests to define inputs for modeling the 50th percentile
nale dummy conforming to government specifications (Ref. 7) and executing computer
simulations of experiments performed with the dummy to examine the validity of

the model results.



The CVS-IV version of the computer program 1ncorporates many
modifications and features developed i1n this project as well as 1n conjunction
with other closely related research studies (e.g., Ref. 5, 6 and 8). Among

the improvements implemented in the CVS-IV are the following

e a new, more efficient integration technique.

e a routine to automatically position a seated occupant 1in
equilibrium.

e an advanced harness belt formulation that treats interaction of
belts connected at a common junction point, belt slippage on
deformable segments, and allows use of rate-dependent functions
for calculation of belt forces

e simulation of aerodvnamic forces acting on body segments that may
be partially shielded.

e 1mproved routines for calculating joint torques.

e use of the main program integrator for computing vehicle and air
bag motions.

e the ability to specify the motion of as many as six segments.

e a provision to account for segment principal axes that are not
coincident with geometric axes, thereby allowing use of any corvenient
geometric axis system as the reference for segment input data

e generality 1in specifving axes about which segments are rotated,
and the sequence of rotations, to achieve a desired initial
orientation.

e elimination of the need for multiple output units,

e routines for computing injury criteria values (HIC, HSI, and C&I)
and for plotting any output variable(s) against anv other variable

or time

During the course of the present study, several interim verions o~
the computer program were distributed to numerous users throughout the world.
However, 1t should be noted that the modifications of each version were incor-
porated in such a way that, in most 1instances, input data decks remained up.ard

compatible and useable with successive versions of the program.

~
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The final report of this project is composed of four volumes:

Volume 1 - Engineering Manu«l - Part I: Analytical Formulation
Volume 2 - Engineering Manual - Part II: Validation Effort
Volume 3 - User's Manual

Volume 4 - Programmer's Manual

Volume 1 describes the analytical formulations, assumptions and the
detailed development of the mathematical equations and relations used in the
program.* Volume 2 documents the measurement of the dummy geometric, inertial
and joint characteristics and experiments performed to validate computer models
of the physical systems tested. The experiments simulated include static tests
of an ellipsoidal air bag to check the validity of the idealized bag shape and
force algorithms, dynamic pendulum impact tests of dummy component sub-assepblies,
and impact sled tests in which the dummy was restrained by an air bag and a
three-point belt restraint system (Ref. 9). The third volume provides instruc-
tion on how to use the program. Besides giving a detailed description of all
data furnished on each input card, it explains the special input and output
features and provides examples of program applications along with the Job Control
Language needed to execute a simulation run. Volume 4 is intended primarily
for use by programmers interested in the detailed structure of the program.
Included in Volume 4 are descriptions of each subroutine, cross reference charts
showing the subroutines called by other subroutines, labeled common blocks used
by each subroutine and usage of each variable in the labeled common blocks in

every subprogram, and a complete listing of the computer Fortran source deck.

* See also Reference 5 and 6 which document the analytical formulation of some
algorithms and features not decribed in detail herein.



SECTION 2

GENERAL MATH AND GEOMETRY RELATIONSHIPS

In order to assist the reader i1n understanding the theoretical
development of the equations used in the program, a description of general
mathematical notation and basic geometrical relationships 1s presented.

This includes discussions of the coordinates and vector/ matrix notation
adopted, basic equations for defining planes and ellipsoids and the relation-
ship between rotations, quaternions and direction cosine matrices. Finally,
this section concludes with a discussion of a method for determining yaw,

pitch and roll angles from the direction cosine matrix.

2.1 COORDINATES AND VECTOR/MATRIX NOTATION

In the development of the program, 1t was convenient to use
a matrix notation because it bears a one to one correspondence with the

coding. For example, consider figure 2.1 below

—
K?l
4
I/ SEGMENT m
/
- Py \\\\
- - ¥ =7
K Lom jm

Figure 2.1 BASIC COORDINATE SYSTEMS

r'a

location of c.g.as measured in the inertial reference
location of a point in segment m 1n m's local reference

location of the same point 1n 1inertial reference

<jrx



Each of the quantities X, ?,? have three components and are

considered as column vectors (a 3 x | matrix) thus (the bars are deleted.)

X =[x, r=1|n Y= 1y,
%3 £ Y3 (2.1)

In standard vector notation write the following:

5<.=X, C+ X1;+X3/-<.

r = Vo lm * 1y Fomt ¥z Ko
Y =Y, [+ pi k
(2.2)
where T. 3: Kk are unit vectors along the axes 1, 2, 3 of the inertial reference

-l -l
and im' jm' Iz:n are unit vectors along the axes 1,2, 3 of the local reference, ¥

Unless otherwise stated we assume all references systems are right handed

orthonormal systems. Thatis
} } = k -k =1/
. 7 -. ;(_- = T - /-(. = 0
j / (2.3)
where "'+ '' represents the dot (scalar) product, and that
L®f=k , j®k =( , k®i=yg
i®@i=,@;=k®kKk =0
/ ¢ = ® (2.4)

where-® designates the cross (vector) product.

The direction cosine matrix, D, 1s the 3 x 3 matrix which con-
verts the components of a vector as measured 1n the inertial reference to its
components 1n the local system, thus the 3 x 1 matrix resulting from the
multiplication operation Dx would be the components of x as given in the

local system,

* Alternate notation which 1s often used is the expression of a vector in terms
of the unit basis vectors x x x3 or e,, 2 )33 . Then a compact notation for
F

the vector, ¥X-= f xr’,zP or r éP

0>

Me
-

P

0

=]



Note that the umt vectors are related by

{on _l_
:?m = D’" !_
Ko I3

Explicitly writing D 1n terms of 1its components yields

dlf drz d”

Oy = dyy dyy dzs

‘{31 dsz 433

m
Note also that,

t L"m j : im K [M
Dm = L Gm $ o dm K" 4m
[ * Ky i Ko K- k.,

Since the dot product of two vectors 18 the product of the

magnitudes times the cosine of the angle between them,the dot product { - {,,

(2.5)

(2.6)

(2.7)

—

1s the cosine of the angle between the vector i,, and the vector {, Thus each

of the components of D 1s the cosine of the angle between the respective unit

vectors, hence the name direction cosine matrix, Since the direction cosine

matrix 1s orthogonal, the inverse of D, D™, 1s the transpose of D, DT.

1

1.e p! = pT

hence DDT = DTD = I, the i1dentity matrix.

(2.8)

To obtain the transpose of a matrix interchange the rows and columns

d,,» are the elements of D and @,, are the elements of D transpose,

6

1f



In vector notation, 1t 18 permissible to write the expression

X+7F =7V
(2.10)
but 1n matrix notation 1t 18 not permissible to write
X +r =Y
(2.11)
because this would 1mply that
X, + r' = Y,
Xz + r,= Y,
X3 + rs = Y‘ (2.12)

which 18 true only if all three quantities have been expressed in the same

reference system.

The proper relation 1s

-/
X+D r=yY

(2.13)
or equivalently
x +0Tpr =y
or 1n the local reference systems
DX+ r = Dy
(2.14)
For example, substituting equation (2. 2) into (2, 10) yields,
Xp i v X8 4+ Xg K +0 iy + Vygmt Ty kyp 215)

- -

Y,z'-f-)’zj-ry,h



Examining (2.15) shows that 1t 1s incorrect to say x; + 1, =y, since x, and y,

multxply_{, and r multiplies Tm' and1 1s not necessarily equal to 1

3

But from 2.5 we get

(m = d,  + d"L* d,z k
= d,, T d r d, K
im a1 _"_* 11 4 a3
km= dy 0 + dy 4 4+ d,; k
(2.16)
hence - -
Emth f'-»;*’j m = (dﬂr; t dyy 1yt Iy, "J)i
+ (diyr, +d,, ry +ds r,)?
+ (dyyry+dasry *"‘.::"3)7‘~
(2.17)

It can now be recognized that the quantities multiplying i, j, k are the

quantities obtained from the matrix operation

dy dy dy ¥y
o7y = d;y dy da Ty
d,, dis Ias *3

(2.18)
Hence the validity of equation (2.13) 1s established.

Dot Product
In matrix notation the dot product of x and y 1s the sum of the

products of the respective components when given 1n the same coordinate

system, hence

XYy = X, ¥ + X,Y, + X370,
Note that
X-v = x7y = y.-x = yTg (2.19)
since XT=(X,,X2,X3 (2.20)
and Y
1
XTY=(X/ Xz X3 Yz T X, Y, XY, 4 Xg Y,
y (2.21)



In vector notation

X |

. ¥ is a valid expression, but 1n matrix notation
-r

is invalid and must be written as
~f T -
X-D'r or X Dr

R-F= X-(@'r)=x70"r = X70Tr = (0X) 7 <@ r .,

here use the matrix 1dentity

T T, T
AB = B
( ) A (2.23)
Note that in 2.22 parentheses have been used to avoid confusion on the order

of operation.
Also note that the notation x- is equivalent to xT, hence,
it would make sense to write A+« B for AT B,where A and B are matrices for

which the product AT B 18 defined.

2
Since X-X = X, + X: + X; the magnitude of x 15 defined as

Ix[ = o (x-Xx)

(2.24)

Cross Product

The cross product of two vectors x, y 1s designated by x@y

and may be obtained from 2.2 and 2.4, thus

— —

7@7 =(x, +x,,'+x,'l:)a(};?+)’z,:+y_,k)

=X, Y, I ®1 + XV L@F + x,v5 1®K

XYy 3@+ N, @ + X, Y, JOK

+ XY, K @1 + Xg ¥, K® 4 + X3 Y Kok
_(xay:-xjvz)iqr-(x_,y,—x, e )f + (X, ¥y - Xz Y, )k

(2.25)



where the fact that a®@b = -b® a has been used

K
—_ 3
kKm
% ) =
\\ cos™ (k1)
\
\
\
¢ »
\ ///
AN -
. >
\
\
\
- \
¢ \
v .



2.2 GEOMETRIC RELATIONS

PLANES. Planes are used extensively in the program for

modeling various surfaces in or on the vehicle.

-7

ol
i

Points which lie 1n a plane satisfy the linear relation

Figure 2.3 PLANE COORDINATES

ax,+bx, +Cxy=d (
2.33)

where a, b, ¢, d are constants and xl. X5, Xg are components of the vector

x which 1s defined from the origin to the point in the plane.

Let F be the vector which locates the point in the plane which 1s nearest to
the origin; hence 7 must be perpendicular to the plane and Iﬁl 18 the distance

of the plane from the origin



It 1s convement to define the plane by the umt vector

— o, .
t = /& and the distance g = |g| (2.34)
Therefore
t = {+ -—L—— ¢ + ___C___ K
Yya‘+b*+ce Ja*+b6*+c* Ya*+b*+c?
(2.35)
The equation of the plane may then be written as
t-X=8 ,7-T=1 (2. 36)
or
t X = t x = A in matrix notation.

Note that a vector which 1s parallel to the plane satisfies +¢.Xx=0

Contact Planes

Contact planes 1n the program are defined as follows.

Figure 2.4 DEFINITION OF PLANE SPECIFICATION

The user 1nputs the coordinates of three points A

7 .'2 ,/:3, which lie 1n the

T
1 = =
plane (Pl (xl,yl,zl), 1=1,3).

14



Tio mrc_ ~ n + -~ the unit vectors (this 18 done in sub-
ay - (p,-p;) @ (P3-P))
T, ) @ (P5-p)) |

(ps-p) @
Tr;-p) ® 4

a, x (p,7Py)

q -
3 ﬁl X (PZ‘PI)I

(Note - these are matrix equations)

Since 22 and ?3 lie 1n the plane, 7, is a unit vector normal (perpendicular)

to the plane.

It also computes

% = Py
fx"; = A,
$3° F = B

The equation of the plane is also given by 24 and g,; that 1s

a point x lies in the plane if

?, ‘X = ﬂ,

To establish contact, 1t 1s important to establish whether a point has pene-
trated the plane (in back of the plane) or :f a point has not penetrated the

plane (in front of the plane.)

The direction of @, is used to define the front surface. Hence
if 9 X > B, x is said to be in front of the plane and if 7 - X< By x1is sard
to be 1n back of the plane. The plane 18 given a finite size by accepting points
which satisfy:

0<a,  x=-8,<la,ph 0<a; - x-8;2 g (psp))
as points which are i1n the boundaries of the finite plane.

15



Acceptable points are 1llustrated as the shaded area 1n the

following figure.

The recommended procedure for defining a planar surface
is to use points such that £ -FA 1s perpendicular to F, - £, as 1n the following

figure

P

The acceptable region 1s then a rectangle with AR A

on the corners.

Note that 1n the above figure the front side would be the side
seen by the reader. If f, and f, were interchanged, the reader would be

viewing the back side.

16



. ELLIPSOIDS. Ellipsoids are used throughout the program

for modeling the contact surfaces of the body and other curved surfaces such

as the air bags or interior surfaces of the vehicle.

Figure 2.5 ELLIPSOID GEOMETRY

Consider an ellipsoid whose principal axes are aligned with the reference

system, Points r and the ellipsoid centered at.£ satisfy the relation

2 2 2
( r,—l,) (rz"’lt ) (’3"’.!)
+ + |— - f
2y Az as (2.37)
where

e} <,
r= r, ’ j = -tz

A 4, and a,, @4,, a; are

the semi axes lengths.

17



This may be written as

(r-2)-A(r-£)=1

(2.38)

1 0 0

where A 15 the matrix a.,’
H
- _— 0
A = (o) a.,’

1

o 0 ﬂ; (2' 39)

For convenience in the following discussion let the center be at the origin

(Q = O) . This places no restrictions on the development.

The ellipsoid equation 1s then written

(2.40)
1f the reference system 1s rotated by the direction cosine matrix D such

that
r =Ds
(2. 41)

then
r-Ar=S"DTADS = §-(DTAD)S = 5-BS={

(2.42)
where B8=0’ApD , 1s the matrix describing an ellipsoid whose principal
axes are oriented by the rotation specified by the direction cosine matrix D

with respect to the reference system of S.

Note that A is a real positive definite matrix and hence B

18 a real positive definite matrix. (i.e. positive real eigenvalues.)
Thus 2.40 mav be used to represent a general ellipsoid with the restrictior

that A be a real positive definite matrix.



Consider a general point X

if X-AX > I the point is outside of the ellipsoid
if X-AX <! the point is 1nside the ellipsoid

if X-AX the point is on the ellipsoid.

"
-

(2.43)
(remember that x 18 the vector from the center of the ellipsoid to the

point X)

Consider a point r on the ellipsoid

Ar is a vector which is perpendicular to the surface at the

point r. The outward normal is then

t = A/ ar|
(2. 44)
A plane tangent to the surface at the point r would then be
defined by the vector t and the distance, g, , of plane from the center of

the ellipsoid is;
B, = r-t=rAr/lAr| = ?qArl

(2.45)
In words, the distance of the tangent plane at the point r on the ell1psoid to

the center of the ellipsoid is 1/““,' .

2.3 ROTATIONS, QUATERNIONS AND DIRECTION COSINE
MATRICES

A direction cosine matrix is assigned to each segment to
indicate the angular orientation of the segment. The direction cosine
matrix is updated during integration by use of a quaternion (Eq. 2.69).
The integrator integrates the quaternion equation (Eq. 2.70). Rotation,

Quaternions and Direction Cosine Matrices are discussed in this section.
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2.3.1 Rotations in 3-D Space

Any rotation 1n three dimensional space may be considered
as rotating a vector b about an axis /E through an angle € 1in the plane that

1s perpendicular to (.

X b

eb

b

Figure 2.6 ROTATING A VECTOR

Let R be the operator (matrix) which performs the rotation

[

b = Rb (2. 46)

R may be expressed as

R= uT+cos0(T-uu’)+snu®
(2.47)
where =
and I 1s the i1dentity matrix.

From Figure 2.6 write

b'=0c + cd + db’ (2.48)



where
= uuTh = Z(E L)
= cos 9 [I—/(/U.T)A = 6056([7:;(/.:.2))

/

St ool g

= 8in 6 u ®b = sIn 9/?@5

Note that
(5.2(5.5)(5-20a5)) = (Z0L) - (o)
5.3 -¢2.3)" (2. 49)

The 1nverse operation (rotation through an angle - 8) is

1]

]

R-r=_/d/tr+ cos € (T-pu’)- stn6u®@
(2.50)

In terms of the components S A2 0,3 of the vector /ZZ

R may be expressed as a matrix.

A iz (1-C0S8)M3SING s (1-€056) 4ty Sin@
Adg fhy (/— case)-/a,.ﬂ.na

) (1-cos6)+cosO

R = /uz/a,(/—cose)-ﬁ—/uaszne g (1-cos8)+cos6
g pay (1= CosO)—u, 5enO g pay(1-€058) 1, 508 g (1-cos8)+coso

(2.51)
by using the relations
A1 /“rz A1 fhe My
- _ 2
pepl = |y | (g mg )= |y My ey
2
3 AsHy AsHa A
(2.52)
and (o} Ay g

A3 o -u,

N
®



Note that

R = rRT

since (/a/uT)T= /a/uT

and

(w®) = —ue®

Additional properties which may prove useful are derived below
determinant of R are given by

The trace and

tr (R)= (+ 2 cos®
[”]= 1
‘e -io *
and the eigenvalues of R are /, € and €@
Note that
/u/ur= (/?-f-RT—ZcosGI)/z(/—CoSQ) (2.53)
T3z - Tas
/ (2.54)
= r - H
- 2stn@ 73 31
T2y = T2
where »r are elements of the R matrix
B = (R—PT)/Z stn 6
RZ = p74 t‘r(R)(R-I)
(2.55)
combinming the above, the characteristic equation 1s given by
2
R>-tr(R)R*+ tr(R)R-1=0 (2.56)

N

In this equation,

A
L

= ¥-1 to distinguish from 1 used as i1ndex below,

g%
9



,,,,,, PR Y R - - T- T Y

The projection operators associated

- r

E, = wu’

3 Es0 =(1- T ius)/ 2
g, e =(I-uu™ius)/

£y = Espo = (I uu"+iu0)/2

—
N
19,]
~3

-

Note that

h

+£E£ + £, =1
2 J

and £ E/{-’ d't,kfal-

v 7 2

where d 4 is the Kronecker delta

2.3.2 Qua‘ternions

T thn s v eem = S A |
il e prograin L€ wnie a

n P [ U . [y RN U Sy
y M+ inthtntadd ~ ailtT uUsccu v upua. LrecLivin

cosine matrices. A more elaborate development of quaternion theory may be
found in Ref. 13 pg.168. The relationship between the rotation operator estab-
lished 1p Equation (2. 47)and quaternions s presented in this section. A ro-

tation may be expressed in terms of a quaternion

Z' =gbao”
' S (2. 58)
where 0 = cosY + sin® =
5 Ve /2 7
and ?*‘ = cos% - sth 9/2!2'2

A quaternion may be considered as four component matrix which has a scalar,
& = cos ‘?/z as a first term, plusthe three vector components, & = sun 6/2,27

This results 1n the following:

b =(a+u)z;(a-u)
b = ala-abu+aba-ubu

(2.59)

23



Interpreting the results as

aboa = a'b gsince & is a scalar
—_— - - - —
xba =al-b.4 +b® o)
where the product of two vectors has been defined as,

bu=-b-urbou
4Ba = G(ba)=(ublu

Combining the above relationships yields

-
5 = (a?_a.u)b+2u-bu+2a u®b (2.60)
when
o = COSG/Z
u = s;nez ,Zz
then
??*-.-(ac”?)[a—Z): a'+ y-d =1
(2.61)
and = -—
b = cosob +(1—casc9),22-b U +stnb8udb
Z’_—_ RZ Lor b= R b (see equation 2, 47)
2.3.3 Relation To Direction Cosine Matrix

If the direction cosine matrix D represents the relation
between the vector b 1n a reference system and b as measured 1n a local

system, then

24



(2.62)

and b = DTb

Previously we defined a rotation matrix R as an operator
which, when applied to a vector measured in a particular coordinate system,
would give the components 1n the same coordinate system of a new vector

which was a rotation of the original vector.
The direction cosine matrix represents the relationship of the
components of the same vector as expressed in two different coordinate sys-

tems, one rotated relative to the other. If the local system 18 described as

have been rotated an angle © about an axisP from the reference, then

DT=R=/a,uT-r cosé[l-,u/uT)-fsme/‘@ (2.63)

2.3.4 Time Derivative Relation Between Quaternions and Direction

Cosine Matrix

Relationships are established between the time derivative of the
direction cosine matrix and angular velocity which 18 then related to the time
derivative of the quaternion. As previously established, a rotation of a vector

b to a vector b' is the following:

b'=D7(t)b at time t.
At a time later 7+ A

a
Then tt 18 possible to write

" !
b =R(a)b using the rotation operator.



Combining these results n

b = R(a)DT ()b = DT(t+4)b (2.65)
therefore from continuity
DTt +4) = R(8) D(t)
°r D(f*A) = D(t) RT(A) (£.606)
Writing the derivative 15(t) as [5({) = f‘*'; [ D(t+4)- D(2)
= A
S hem | P(E) (RT(a) -1)
b(e)= M[ i
Then
D(t)= Azimo[ D(t)( T+ cos@B)(I-uu’)-sin@(a) u® -I)J
a4
(2.67)
Using L'Hospitals rule
-/ . -do .
ODWBID()= — M@ =-0u® (2.68)

d4

Interpret x4 as the instantaneous axis of rotation and €

as the angular time derivative. Thus the vector 8 4 defined 1n Equation (2.68)

1s D "w, where w 1s the angular velocity 1n the local reference system

associated with D From the matrix identity

(Ab) ® (AC) = det (A) (A ' b®C
wehave 0 @0 ') =0 W) or 0wy @D ! 207t u@®

Equation 2.68 may be rewritten as

oot = b = o0 0ty @07

-DD—1 w@® hence
57t =07 u@® (2 68a)



In quaternion notation, using q instead of R,

D=9 Dog (2.69)

where the quaternion 1s defined to operate on the column vectors of the D

matrix, D, is the initial value of D,

and ?*?_._/
?(o) =/

Differentiating equation (2.69) with respect to time, yields
frosgt § 00 ¥

o »

? fo + D} #

-2 (?'le) ® D

[}

o

since ?’?' and - ?'f is a vector. This results the relationship
2 ?’f." @
- 1%

or

(2.70)
More explicitly, write q as
0 -@, -4, -d %0
@, 0 Wy T @ g1
A 4 =T,
772 4 e, o0 4
3 2 ", P2
(2.71)
GJ, ﬂ.)z' —Cd, O ?3
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which has the characteristic equation

2
(Az+;’w'w) =

A (2.72)
¢
and double roots Ay = 3 ] w |
A
and ;\z. = __42_ I wl
FS E
Note that 7 =A I. The projections are given by
A T
EA; - 2 [:I 21}
and
E = I-E
A, Ay
If T 1s a constant, equation(2. 7Dhas a solution
T
2(t)=e""g0)
(2.73)
where
slawlt
< (eosh|wlt) 14+ nElelt
5wl
Therefore it 18 possible to write,
sinlowlt
g (6) = (eos o] t) g (o) + S0l o 3
% |e (2.74)
and
T @le) = 2 (o
7 J ?( ) (2.75)

In particular, 1if

2 (0) =

QOO0 ™



and o
$(0) = Tg (o)=Y w',

then “
- -

cos [wft)

sm(f/z [a]t)(—:ﬁl

(t):
? s:.n(’/z ,u,t)ﬁ-?l

scn('/z]a))t)&f-l 2. 76)

In quaternion notation, we have

g = cas(’/z o) + (sn(ls ol t) l—:))_i

(2.77)
which represents a rotation of angle |w]|fabout the axis -I-w—l
(]
2.4 DETERMINATION OF YAW, PITCH AND ROLL ANGLES OR EULER AIIGLES FROM

DIRECTION COSINE MATRIX

P

The angular orientation of the segments in the 3-D program are

computed and maintained in terms of the direction cosine matrices.
For input and output purposes, it is convenient to express the

direction cosine matrices in terms of three rotation angles, either yaw,

pitch and roll, or the Euler angles, spin, nutation and precession.
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2.4.1 Computation of Yaw, Pitch and Roll

A direction cosine matrix can be comput ed as the product of
three successive rotations about the coordinate axes {see Figure 2.7). This

product can be expressed as D = T (r) TY {p) Tz(y), or in detail

1 0 0 cosp O -8inp cosy  siny
D=0 cosr sunr 0 1 0 -siny  cosy
0 -sinr cosr sinp 0 cosp 0 0
3 2 1

where 1n the above matrix product

l - represents a yaw around the z axis, ’I‘z (y)
2 - represents a pitch about the resultant y axis, T} (p)

3 - represents a roll about the resultant x axts, T ‘r).
x

The complete matrix 18 given below:

cOSp cosy cOSp siny -swnp

-Siny cOST cosy cosr cosp sinr
tsinr sinp cosy, +sinr sinp siny

tsiny sinr ) (-smr cosy ) cosp cosr
Y y

lwo]
1]
TN

+cosr sinp cos +cosr sinp sin

We have tr(D) = 1 + 2 cos 8, (Section 2.31).

2 2
(cos +/2 cos p/2 cos r/2 + sin v/2 sin p/2 sin r/2)" = cos 0/2

30



The direction cosine matrix defining the same orientation 1s:
D=/d,-J} for i and j = 1 to 3

The present routine computes yaw, pitch and roll angles with the relationships

J= fdzz é ) p=-sin /dn) r =fan &33) (2. 78)

Application of expressions (2,78) provide excellent results except
in regions approaching p_-_*—%(Cos/o—»o) . Additional relationships have been

derived which may alleviate problems in this special region.

a,,+ ds, CQSé/—T)/]fSZﬂP}
—du #dy, s /_;/-r)/szm,D)

dyy - dyy = cOs(ypr)(1- stnp)

dyy* dyy ==sen (y+7) (1-5t0p)

U]

hence 1f Sinp-I
-d. d
we have y- r = tan? / 277 32}
oz + c[
5[22,0: -z

and 1f
2/ SL
Y+t = lan /;d 2., )

At these points (when cos p= 0 sin p=+ 1) 1t 18 impossible to
distinguish between yaw and roll hence some arbitrary decision must be made

unless further information (such as memory of last point) 18 available.

2.4,2 Fuler Angles: Spin, Nutation and Precession

In a manner similar to the above the Euler angles may be

obtained from the direction cosine matrix. The conventional notation as used

in Reference 11 is

D= TJ(V) Tx(e)'f;,(#)
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where ¢ , & and ¢ are termed the spin, nutation and precession angles,

respectively. In particular the direction cosine matrix 1s expanded 1in the

following manner and 1is 1llustrated in Figure (2.8.)

cos y S1m ¢ 0 1
-s1ngy cosy 0
0 0 1

when multiplied yield.

0 0 cos ¢ sing
cosé@ sine -sing cos ¢
-s1n@ cosé 0 0

sing S1N ¢ Sing

cOsS8 cos ¢

sin @ cos ¢ smem

COos & cos¢

cos ¢ cos @

As before the Euler angles may be computed by

o= cos”(d5s) | y- fan"(d"/dz,), ¢= tan (7 ay,)

6% T ).

-
cos y cos¢ cos i
-Slny Cc0sSé sin¢g +51n¢

D =
-siny cosg -s1n y
-COSy CO0Sé@ sing +COS
sin® sing -s1n @
—
in almost all cases (1.e., & ¥ O , or

For the special cases of

ships may be used.

2]

= 0 or 7 the following relation-

8= 0

vro = 'éan-l<._.__d’2 - % )

dll * d(za

[
rJ



Again, for these special cases 1t 15 impossible to distinguish between the

spin and precession. An arbitrary decision could be made such as setting

¥ = 0 and computing ¢ from the above table. An alternate solution 1s to

use additional information such as memory of the last angle values to alleviate

the problem.
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SECTION 3
VECTOR EXPONENTIAL INTEGRATOR

3.1 INTRODUCTION

In large scale simulations, such as the Calspan Three-Dimensional
Crash Victim Simulation computer program, where the amount of computer time
can become overly excessive to produce integration results to a desired degree
of accuracy, it becomes very desirable to determine those integration techniques
that are capable of producing the best integration accuracy for a minimum
expenditure of computer time. Throughout the development of the CVS, Calspan
has been continually investigating different integration techniques to achieve

these goals.

A new integrator, called the Vector Exponential Integrator, has
been incorporated into CVS-IV that duplicated results obtained with the CVS-III
integrator but required only about 10% of the computer time for a test case
where the CVS-III integration control parameters to achieve comparable results
on IBM and CDC computers were determined by NHTSA personnel. Other studies at
Calspan (Sections 3.4 and 3.5) indicate that, for the same amount of computer
time, the accuracy of integration is significantly improved with the new

integrator,

3.2 MATHEMATICAL FORMULATION OF THE INTEGRATION PROCEDURE

To describe the procedure used by this integrator, consider the first

order differential equation

; = f(x, t) (3.1)
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The solution of equation 3 1l may be written as

t
x(t) = x(0) + f e (t-) [f(x(7),1)-a(x(1)-x(0))]dr (3 2)

0

where a 1s a constant to be determined
Assume that f may be approximated by

;(t) = f(x{t),t) = ax(t) + aj +at+ azt2 (3 3)

where a, a_, a, and a, are parameters to be determined. We then have

0’ 4 2
t
x(t) = x(0) + J' e (t-T) [ax(0) + ag + a;T azrz]dr (3 4)
o]
or
x(t) = x(0) + (ax(0)+ay)t e (t) + at’e (t) + ajt’e (1) 3 5)
where
eo(t) = ®*-1)/(at) +1 asat >0
e (1) = (eo‘“-u/(at) > 1/2 as at - 0
e (t) = (2¢,*"-1)/(at) > 1/3 as at + 0

(The presence of the exponential function 1s the reason for the name

exponential 1integrator,)

The behavior of the integrator 1s determined bv the method used for

0’ a1 and a2 In the latest version, tae

integrator operates 1n two modes, a reset mode and a memory mode In both

determining the four parameters, a, a

modes the parameters are selected to fit the computed derivatives at t = 0,



the beginning of an integration interval, Hence we may rewrite equation 3,3
as
L [ ] 2
x(t) = a(x(t) - x(0)) + x(0) + alt + azt (3.6)
In the memory mode, when a successful integration step has been

completed over a time interval h, t + h is substituted for t, so that t = 0
15 always the start of a new time interval. This yields
2

a(x(t+h) - x(h)) + (a1 + Zazh)t + azt (3.7)

x(t+h)

+

a(x(h) - x(0)) + X(0) + ah + a2h2

The functions are then redefined so that the form of equation 3 6 1s preserved,

where

new a1 = al + 232h
new a, = a,
L] [ ] .
new x(0) = old x(h) is used in place of u(x(h)-x(O))+x(O)+a1h+a2h2

new x(t) old x(t+h)

These values are used to estimate the value of x(t) at the first half
step of the next interval, 1.,e., when t = h/2. In the reset mode, the parameters

a, a; and a, are set to zero.
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Computational Procedure

The i1ntegrator uses a procedure similar to that used by a basic

Runge-Kutta with the steps as follows:

Step 1

Step 2

First midpoint calculation at t = h/2.

a)

b)

c)

d)

e)

x(h/2) 1s evaluated using equation 3.5

L]

x{h/2) 1s evaluated by calling Subroutine PDAUX.
The parameter o 1s unchanged.

In the memory mode, the parameters a, and a, are modified so

that the fit for the derivative 1s exact at t = 0 and 1s least
squares fitted to the values of the derivative at the beginning
and middle of the previous interval and to the value just
determined.

L]
In the reset mode, a, 1s set to give a linear fit to x(0) and

1

x(h/2) with a = a, = 0.

Second mid-point calculation at t = h/2

a)

b)

c)

d)

x(h/2) 1s evaluated using equation 3 5
x(h/2) 1s evaluated by a call to Subroutine PDAUX.
The parameter o 1s updated.

In the memory mode, parameters a, and a, are computed to fit
the values of the derivatives at t = 0, t = previous mid-point
and the average value of the derivatives obtained in this and

the previous step
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Step 3:

Step 4:

e)

In the reset mode, the parameter, a;, 1s set to give a linear

fit to the value at t = 0 and the average value at t = h/2.

First end point calculation at t = h,

a)

b)

c)

d)

x(h) 1s evaluated using equation 3.5.
x(h) 1s evaluated by a call to Subroutine PDAUX.
The parameter a 1s unchanged.

In both modes, the parameters a, and a, are computed to fit

the value at t = 0, the average at t = h/2 and the value at

t = h just computed,

Second end point calculation at t = h,

a)

b)

c)

d)

e)

x{h) 1s evaluated using equation 3.5,

[ ]

x(h) 1s evaluated by a call to Subroutine PDAUX.
The parameter a 1s updated.

In both modes, the parameters a, and a, are evaluated as they

were in Step 3d.

Tests for convergence (to be described later) are performed.

If the convergence test passes, the integrator has successfully
completed a step and we proceed to the substitution t « t + h
as explained previously. If the integrator has successfully
completed three consecutive steps for the same value of h, the
value of h 1s doubled but is limited to the input parameter hma

X
Control 1s then returned to Step 1.
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£} 1If the convergence test has failed and 1f the specified
number of 1terations of Steps 4 and 5 have not been made
(as controlled by the 1input parameter NDINT), control 1s
then passed to Step 5

g) If the convergence test has failed and the specified (NDINT) number
of 1terations have been made, the step size h 1s halved and the
process 1s repeated by returning to Step 1 However, if h 1s
already less than the allowed minimum step size (as controlled
by the input parameter hmln)’ the i1ntegration test 1s considered
successful and the t « t + h substitution 1s made and control 13

passed to Step 1,
Step 5° Additional calculation at mid-point, t = h/2.
a) x(h/2) 1s evaluated using equation 3 5

b) x(h/2) 1s evaluated by a call to Subroutine PDAUX.

c¢) The parameter o 1s updated.

d) In both modes, the parameters a, and a, are evaluated to fit
exactly at t = 0, the last value at t = h and the new value

at t = h/2 just computed.

Step 4 1s then repeated except that the value just computed at
t = h/2 1s used for ;(h/Z). Where the standard Runge-Kutta method evaluates
functions only at t = 0 (or end of previous step), t = h/2, t = h/2 and t = h,
the new 1ntegrator now tests for convergence, and revaluates t = h/2 and t = h
for NDINT 1terations 1f the convergence test fails. However, the convergence
test may pass at any t = h evaluation. Although 1t seems that increasing
NDINT may cause extra functional evaluations and hence expend additional
computer time, 1f the extra functional evaluation can reduce the error and

cause the convergence test to now pass, this may prove to be more efficient
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than the additional functional evaluations made necessary by halving the step

size, The sequence of functional evaluations is summarized in Table 3.1.

The integrator treats each variable separately by the preceeding
process. There are two exceptions to this, one is the determination of the
value of a and the other 1s the translation of t in the parameters associated

with the quaternions.

32.2 Determination of the Value of o

The variables are treated in their three component vector form
X and X, the same value of a 1s used for each of the three components of the
vector, but a different a 1is evaluated for each vector. This 1s the reason

for the name Vector Exponential Integrator.

Let

2 (3.8)

X(t) = a (x(t) - x(0)) + X(0) + th + Zzt
be the vector form of equation 3.5. If two different determinations of X(t)

and x(t) are made at the same time point t, we have

n

a (X (0) - X(0)) + F(0) + @t + a.t?

X (0 1 2

B (0) = o (5y(1) - X(0)) + X(0) + &t + Zztz

Subtraction yields

x,(8) - X (1) = a (x,(t) - X (1)) (3 9)
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If this process 1s done at several time points, we may make a least

square determination of a by

Lo (t) - x (g)) (e ) - X (t))

(3.10)

<|c

— — 2
ﬁ Ixz(tn) - xl(tn)|

The values of the numerator and denominator are carried separately as U and V
so that they may be updated when new data points are obtained, In the memory
mode, when t is translated by t = t + h, U and V are decreased by a memory
factor which depends exponentially on the value of the step size h just

completed. In the reset mode, both U and V are initialized to zero.

3.2.3 Integrator Convergence Tests

The Vector Exponential Integrator obtains two sets of derivatives
in vector form. One set, considered to be the computed value and denoted by
?c(t), 1s obtained by a call to Subroutine PDAUX. The other, considered to
be the estimated value and denoted by ie(t), is evaluated from the functional
form of equation 3.8 using the latest values of the parameters (repeated for

convenience).

T(0) = aZ() - X(0)) + X(0) + @t + e’ (3.11)

If a 1s large, this estimated value 1s very sensitive to perturbations

of x(t). Consider the error measure €2 defined by

—_ - 2
EZ _ |xe(t) + ad - xc(t)| . s |E12

(3 12)
X (1) %))
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where

|
"

perturbation of x(t)

A = arbitrary constant weight (present version assumes A = 1)

Equation 3 12 1s minimized when

s - a (xc - xe)
= (3.13)
o x T 11X
and has the value
= =12
2 !xc - xe,
€ = 3 14
min - 2 2= 2 ( )
chl + o ,x' /A

Note that when az/x = 0, this reduces to a relative squared error of the

derivative as was tested i1n the previous integrator in CVS-III.

For each vector variable which 1s integrated, the user supplies three
levels of test numbers (Tl’ T2 and TS) that are used by the Vector Exponentia

Integrator to test for integrator convergence.
The procedure to test for integrator convergence 1s as follows:-

a. If the magnitude test T, 1s zero, no further testing 1is

1
performed and the test 1s considered passed for this vector

variable.

= (2 2
b If T, #0 and 2f Ixcl <T,%

and the test 1s considered passed for this vector variable

no further testing 1s performed
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2
2 b4
no further testing 1s performed for this vector variable and

c. [If the absolute error test T, # 0 and l§;-§;|2 <T
the test 1s considered to have passed.

2 2 -
d. If e min > T3 , the relative error test parameter, the
integrator convergence test has failed; otherwise this vector
variable has passed and the procedure is then repeated for all

vector variables.

It should be noted that for an integration step to be considered as
successful, all vector variables must pass the above sequence of tests;
whereas any single vector variable failing Step d will cause the integration

step to fail.

3.3 ANALYTICAL SOLUTION OF FREE BODY ANGULAR MOTION

The angular momentum vector in inertial reference of a single segment

1s given by the matrix relation
-1 3.15
h = D~ du (3.15)
where

D 1s the direction cosine matrix
¢ 1s the inertia matrix (tensor), and

w is a vector representing the angular velocity

about the principal axes in local reference.
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If the segment has no external torques acting on 1t, then h 1s a
constant and the equation of motion 1s obtained by taking the time derivative

of equation 3.15.

. _ _ » -
h = (D 1 dw) =D 1 dw + D 1 w& dw = 0 (3 16)
Equation 3 l6can be solved for the angular acceleration vector
-1
w ==9% w@@w (3 17)

It can be shown that

w s P0 =0 (3 18)

hence

w » dw = 2E (310)

which 1s a constant where E 1s the energy. Also,
(dw) o (%w) = heh 1s constant (3 20)

If ¢ 1s a diagonal matrix, equation 3 17may be written as

w, = w2w3/31 (3 21)
[ ]
w, = mswl/a2
wy o = w1m2/a3
where a, = ¢1/[¢2 - ¢3)
a3, = 8 (05 - %))
and a; = ¢3/(¢>1 - ¢2)
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Case 1:

The following cases may then be considered:

The segment has equal principal moments of inertia, 1i.e.,

L]
In this case, equation 3.17 becomesw = 0, hence, w 1s a constant.

The instantaneous angular position 1s described by the quaternion, q, where

W
q = 5 TET 5 (3.22)
and the direction cosine matrix by
ww * w®@
D= (cos |w|t) I + (1 - cos |u|t) - " (sin Juw|t) Tol (3.23)

Case II:

to yield

The segment has two equal principal moments of inertia, i.e.,

RN ES

. [ ]
In this case, since wg = Q, Wy 1n equation 3,21 may be differentiated

.

The solution 1s

w, = m2w3/31 = m1w3/ala2 (3.24)
w w
2.3 .
Wy =Wy cos (Ot + ao 0 513 {t
0 1
w, W
3.1 .
_ o 5 sin Qt
wy = w, COS Qt + 7 Q (3.25)
o
W3 T Y3
o)
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where Q = — = lw30(¢3 - ¢1)/¢1| (3.26)

(1

In terms of the Euler angles » ¢, O, ¥ (precession, nutation and

spin), 1f we let

¢1m1/[h| = sin ¢ sin O

it

¢2w2/lh{ cos ¢ sin O (3.27)

and ¢3m3/|h[ = cos O

the momentum vector, h, will be aligned with the inertial z axis; the nutation

angle, O, will be constant, and the spin angle, Y, may be computed directly as

-1 Y
v= tan 7= (3.28)
2
The precession angle, ¢, 1s determined by the relation
$ sin O = w, sin ¢ + w, COS Y = J-—}Ll--su'm 0] (3.29)
1 2 %
Therefore,
o = Il (3 30)
1s a constant, and
b6 = ¢+ (Ih'm It (3 31)
o 1

(1) See Section 2 4.
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Case III: The principal moments of inertia are all unequal.

It 15 no restriction to assume that ¢1 < ®2 < ¢3. Equation3. 21 may

then be written as

. [ ] L]
a = a = =
19191 T Bty T B3tgty T wpupvs (3.32)
Integrataing equation 3.32 yields
2 2, _ 2 2 2 2
al(wl -wlo ) = az(wz -mzo ) = as(ws ‘mso ) (’5'33)

@y and Wy MAY be expressed as functions of w, and substitution then yields

N _ 2 2 2 2 2 2 1/2
ag, = {[-a,(w,"-w, V-ajwy “1-a,(w, -0, ")-az0y “1/a a,) (3.34)
o o o o
If we let
_ 2 2 a 2 )
min = minimum (azw2 -awy o, 3w, -3z (3.35)
o} o) o
_ 2 a Z_a 2)
max = maximum (azm2 -alw1 » Bpu, 393 (3 36)
o o) o o
wy =¥ 4 m1n/a2
and m = min/max
then equation 3.34 may be written as
* |  max ‘d 2 2
y = Ta s (1-y")(1-my™) (3.37)
q aaa;
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Now by defining

dy
N (1-y%) (1-my?)

as an Elliptic Integral of the First Kind, and

y = sn(u)

(2)

as the corresponding Jacobian Elliptic Function , one obtains

— a
_ min max -1 2
wz = 4 —_— sn ([t-to] 2 a.a. + sSn [wzo 4—— H

az 1 292 min
Furth £ 2w 2 _ag ?
urther, 1f min = sz - lwl . then
(o] o]
w? = o (MY P
1 a
1
2 max 2
wg = - ( 3— ) dn'(u)
3
2 2
or, if min = aju, - Az, then
o] o]
w? = - (M) gn’u)
1 a
1
wl o= - ( B0 cnz(U)
2 a3

(2)Reference 10

(3 38)

(3 39)

(3.40

(3 41)

(3.42)

(3 43)



where u 1s the argument of the sn function used for w, 1n equation 3.40. Care

must be taken i1n selecting the signs of the square roots which must be chosen
L[]

to yield the proper signs for w and w. Also note that

sn’(u) + cnl(u) = 1 (3.44)

it
—

dnz(u) +m snz(u) =

The angular position may be determined in a manner similar to

equation 3.27, namely

¢3m3/[h] = cos O (3.45)
%191 = tan v
23u;

and equation 3.30 becomes

. sinzw coszw
$ = lhl [ 3 + ) ] (3.46)
1 2
2
i |h] ¢1w1 + ¢2m2
R 2 2 . 0 2 2
19 2 Y2

[ )
Note that in the general case, © and ¢ are not constant as they were when
¢1 = ¢2.

Further substitution into equation 3.46 yields

(¢3—¢2) + (¢2-@1) k snz(u)

¢ = |nl 0,(85-0,) + 0,(8,-0)) k sn’ (u)
-1 -1
k$ ol nk snz(u) ] (.47
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where

. oy (9,-9))
2 (95795)
2 2
and k= 11f min = au, - alw1
o o
2 2
= mif min = azmz - 33w3
o o

This 1s now in a form that can be expressed i1n terms of Elliptic Integrals

of the Third Kind which are defined as

u

7(n, ulm) = J‘ [1 -n snz(m)]_1 dw

0

The solution of equation 3 47 may be written as

t-t
¢ = ¢o+ |h| @30 + C [n(nk; u]m) - m(nk, uolm)]

where
-1 1 413,25
¢ = |nl (o - o) o~
= sn7} Jmin )
u = sn (wz .4 a,/min
= sn-1 (w a_/ )
Yo 20 \] 2 min

(3 48)

(3 49)



STIMULATION OF FREE BODY ANGULAR MOTION

[#2]
Y

Users of CVS-III have experienced difficulty in those cases that
involve rapid angular motion of individual body segments, Examples of this
are (1) the basic test case Calspan has supplied on previous program tapes when
the feet make i1nitial contacts with the floorboard and toeboard, and (2) pedestrian
runs by Chrysler Corporation for the RSV program when the hands make initial
contact with the hood. In both cases, these were small body extremities making
hard contacts near the beginning of the simulation, Attempts to control the
resulting rapid angular motion by varying the input of the integrator control
parameters forced the integrator to the specified minimum time step intervals,

resulting 1n excessive computer CPU time, and produced questionable results.

It became suspect that the integrating techniques used by CVS-I1I1
were either incorrect or incapable of properly integrating angular motion.
It was decided to run computer simulations of a single rotating segment for
a case where the exact analytical solution is known to study the accuracy of
the integration of angular motion produced by the new integrator. The

analytical solution of free body angular motion is given in Section 3.3.

3.4.1 Computer Simulation Inputs

The basic inputs for the test case were given by:
(1) One segment and zero joints (Card B.1).

(2) Principal moments of inertia (Card B.2),

@x, @y and @Z (or ¢1, ¢2 and ¢3) =1, 2 and 3.
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(3) The input yaw, pitch and roll (Card G.3),

y = tan~} % = 116.565051 deg.

-1
P = sin ,|5/14 = 36.6992252 deg.
r = 0 deg.

These were chosen so that the momentum vector would coincide with
the Z axis. Note that, CVS program normally computes the initial direction
cosine matrix by reversing the order of the input rotation angles (yaw, pitch,

and roll), 1 e.,

(4) The 1initial angular velocities (Card G.3),

,» and ws) = 36799 3780 deg/sec

w , w and w_ (or w
b y z 1

These were chosen such that the frequency of the components of angular
veloc1ity would be 100 cycles per second, the period of one cycle to be exactly
10 msec This value 1s obtained 1in radians/sec by

w = 200 3 K (m)

where K (m) 1s the complete elliptic integral of the first kind for m = 1/2.

(5) There are no specified contacts and the segment 1s falling

under the influence of g (Card A 3).
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3.4.2 Additional Simulation Qutnuts

In addition the output routine was modified to give the following

outputs for every successful integration step.

(1) The segment angular velocity was changed from rev/sec 1n

vehicle reference to rad/sec in local reference.

(2) The components and magnitude of the momentum vector, h,

given by

(¢w)* (dw) = h-h

This should remain constant, with the x and y components equal

to zero.
(3) The constant 2E , where E 1s the energy, given by
we (dw) = 2E
(4) In addition to the angular displacements, y, p and T,

computed from

the Euler angles, ¢, @ and ¢, were printed in degrees from

D =T,(¥) T (0) T_(¢)
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(5}

0*

¢>*

In

to Jacobian

were not made

(93]
4
97

The following angles, 1n degrees, are computed as follows
and theoretically should equal the indicated rotation

angles

1 Ther

-1 F2%2
= tan 5 o = T
3“3
a1 %

u
(2]
e}
w
E{
[
O

addition, the other two rotation angles, y and y, can be compared

elliptic functions, sn(u), cn{u) and dn(u}, but these comparisons

Comparison Measures

The resulting time histcry outputs presented manv 1tems whose

accuracy could be determined to studv the accuracy of the integrating techniques

used Thev 1nclude

(1)

The x, v and - components of linear acceleration ot the
segment c.g should be 1in the ratio of 1 2 3 at the half-
period (every 5 msec) time points  The resultant should
remain at a constant 1 g for all points

The z component of linear acceleration at the points (1, 2, 3)
and (0, 0, 1) appeared to remain constant with small
tluctuations Also, the resultant linear velocity of the

point (0, 0, 1) appeared to remain constant with small
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(3)

(4)

(s)

(6)

fluctuations. These results were unexpected and have not

been studied.

The components of segment angular acceleration (rev/secz) in
local reference should follow known elliptic functions with a
fixed half-period (5 msec). Their magnitudes are quite large,
= 106, and the deviation from the known values at the
half-period time points was one of the measures used to

study the accuracy of the various simulations that were run.

The magnitude of the x and y components of the momentum
vector h should be zero, and the deviation from zero 1s

a meaningful comparison measure.

The values of |h| and E should remain constant and their
deviation from the known constant value can be used as

comparison measures,

The deviations of the computed values of p*, r*, 0*, and
¢* from the printed values of p, r, O and ¢ at the same
time points are also useful comparison measures. It was
difficult to determine, however, 1f deviations were caused
by 1naccuracies 1n the direction cosine matriX or 1in the

angular velocities.
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34.4 Simulation Input Parameters

Several simulations were run for 25 msec, 2 1/2 full cycles,

varying the following parameters.

(n

(2)

(3)

(4)

Integrating procedure used.

a. New Vector Exponential Integrator,

b. Previous integrator of CVS-III.

c. Standard Runge-Kutta integrator.

Value of the maximum step size, h .
max

Value of the initial step size, ho.

Value of the relative error test for angular acceleration

A summary of the various simulations 1S presented in Table 3.2.

3.5 RESULTS AND CONCLUSIONS

A study of Table 3.2 and the finer detail given by the simulation

outputs show the following results and conclusions

(1)

The new Vector Exponential Integrator produces very accurate
results of free body angular motion, The resulting accuracy

1s 50-1000 times better than that produced by the previous
integrator of CVS-III, using the same integrator control
parameters and approximately the same amount of computer

CPU time (as measured by the number of calls to DAUX). In
order to produce the same degree of accuracy with the CV5-TII
integrator, 1t would be necessarv to tighten the relative error

controls which would increase the amount of computer CPU time.
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(2)

(3)

(4)

The variation of the input parameters, hmax and ho’ had
small but inconclusive effects on the resulting accuracy with
the new 1integrator. In some cases a maximum step size of

1/2 msec produced better results than those of 1/4 msec

The most significant increase 1n simulation accuracy was
achieved by decreasing the relative error test for angular
acceleration from 10'3 and 10-4. The resulting accuracy
increased by factors of 6-30, using the largest values of hma>
and h0 tested, but required a 54% 1increase in computer CPU
time, It 1s believed that a further tightening of this input
parameter would improve the accuracy even further, as long

as the relative error can decrease rapidly to this test
parameter for the NDINT (input number of maximum internal
steps for each integration step) iterations. This appears to
be true 1in our one segment simulation, but 1s not always true
in a full scale simulation., If the relative error test 1s not
satisfied after NDINT internal steps, the integrator fails

for that time step, and the current integration time step 1S
halved to try again. There were no such integrator failures

1n all of these simulations for the one segment model.

A more detailed study of the individual simulations 1ndicated
that there are two sources of error in the integration results.

They are.

(a) A transient error seems to ex1st at the very first
integration step. The new Vector Exponential Integrato:
has a built-i1n memory to integrate to the mid-point of
the next step, but this 1s zero at the start  This
transient error mav also be influenced bv the accuracy
of the input numbers, the 1inputs to the one segment model
were supplied with nine significant figures The error

should be minimized by starting out with a small ho.
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(5)

(6)

(b) A cumulative error buildup dependent on the number of
integration steps. The 1ndividual errors are controlled
by the relative error test. If a particular variable
remains fairly constant, the cumulative error 1s limited
by the number of integration steps times the relative

error test times the magnitude of the variable.

In the individual simulations, some of the actual errors
followed a definite quadratic function behavior after

5 msec, but not between 0 and 5 msec. It 1s believed that
this was due to extra integration steps that are performed
when ho < hmax’ which i1n some cases more than offsets

the improvement in the transient error that exists at the

beginning by taking a small ho.

Differences between simulation results obtained previously with
the CVS-III and the new Vector Exponential Integrator are
probably due to loose tests on the relative error for angular
acceleration and the new Vector Exponential Integrator probably

yields much more accurate results,

It must be realized that the angular velocities for the
simulations listed in Table 3.2 are much larger than those one
would normally expect in a full scale simulation. Also, the

2 1/2 complete revolutions of a single segment, achieved here

in 25 msec, 1is much larger than the rotations usually occurring
in full scale simulations. We therefore do not think that a
relative error test of 10»4 1S necessarv under normal conditions.
The following integrator control parameters are recommended as

a result of these and other studies.
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NDINT* 6

NSTEPS As necessary to control length of simulation
DT. An 1ntegral multiple of h
max
hO' 1/8 or 1/16 msec.
h : 1/2 or 1 msec but a power of 2 multiple of h_.
max o
h : Equal to h_.
min o
Relative
Error 22
Test- 10 for angular acceleration (all segments),

10-3 for linear accelerations (reference segments

only).



SECTION 4

EQUATIONS OF MOTION OF A SET OF CONNECTED RIGID BODIES

4.1 SEGMENT MOTION EQUATIONS

This section presents the equations of motion of a set of rigid bodies

using matrix notation which has a direct relation to the actual program code.

In this analysis each of the segments is assumed to be a rigid body
connected to another segment by means of a joint. As indicated in Figure 4.1
only one joint is assumed present between any two segments. It 1s possible now
to disconnect these segments into free bodies by supplying (for each segment
in the appropriate direction) the forces and torques that exist at the joint.

A diagram of this step is presented in Figure 4.2. In this form the equations
of motion may be written separately and simply for each rigid body with a cor-
responding set of constraint equations which allow the computation of the forces
and torques of constraint. By this method extension of the equations to any

number of segments linked in this way is a simple matter.

Define the location of the center of gravity (c.g.) of the nth segment

in an inertial reference system by X, denoting.

X, =1 4 where X,4,Z, ~ are orthogonal
Z,/n

o

coordinates in the inertial reference system.

[3
Define a principal axis system fixed in the segment by (u )
A ln

Then denote J, as the direction cosine matrix associated with segment 7 ,
. . X
Such that 1f(§7 locates a point in the local system, and{y} locates the same
z

point 1in the inertial system then J,, satisfies the following relationship:
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Figure 4.1 SYSTEM OF CONNECTED RIGID BODIES
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b =D,y |- X, (4.1)
C z
or equivalently
4 x =X
bl =D, (¢ — 9 (4.2)
c (z —z)

Define also the £ th external force acting on the nth segment by /s
The point of application as indicated in Figure 4.2 15)97k measured in the »

local system.

Let ﬂb be the constraint force at joint , acting on segment n» . This
of course assumes the segment » 1s connected to another segment by joint J
Due to the nature of the free body configuration assumed, if segment » 1s con-
nected to segment /m by joint ; then ﬁ% acts on segment 7 and —fqlzﬂm acts on

segment 7, .

The position of the c.g. of the nth segment is X, and the velocity
of the c.g. 1s then Xn . Denote the mass of the nth segment to be M, then
the linear momentum 1s M%.Xn . The dynamic equation of motion for the nth
segment 1s then

d )
Jf(MﬂX”)=;§’§*ff”J (4.3)

where 4=7,2 ...., total number of external forces acting on segment # and ;=/¢ -

the joints connected to segment n.

Since the mass of each segment 1s constant with respect to time, this

equation may be rewritten as

AJ”,X5 = ij;kfégéb

This 1s the linear (translational) dynamic equation.

(4.4)
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For development of the angular equation denote w, as the angular
velocity vector of segment» and @, as the inertia matrix about the c.g. of
segment 2 . The angular momentum of segment R about the c.g. is written as
@n Y, . Note that @, w 1s in local reference so care must be used when
taking the derivative. With this in mind, the angular dynamic equation in

inertial system components is:

;"Z /ﬂr;1¢n w )=_p,;12 Jorgues (4.5)

Now taking the derivative yields
. - - .1 . _ -7
20 By Oy 2D Oy D5y i =D Torgues
Note that ¢n 1s a constant property of the segment therefore ¢ = 0.
n

Also note that J;'--D,’:ﬁn 25 and D'n D:hwn @ , which 1s a matrix defined

by equation (2.68.) The angular dynamic equation may be written as
-z -7 . -z
D /wn ®) By o, +3, " , @ =D, & Torques (4.6)
Now the torques may be catalogued as follows:

D.IZfOZ'Q’IlC,S = Z(D:f,,*)ﬁ f,-,k due to external forces

-z due to forces of constraint
"Z(pn r,,)@ In at joint
J J
# 2 Trops. due to constraint torques

~ ZTex due to external torques

Rewriting equation (4.6) yields

by u =0, @) Pyu #D, Ej@nl ﬂzk)@ak,ﬁg@:rn)@/;b
FE T Z"z',x]

Cons

(4.7
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32 CONNECTIVITY

The connectivity of the model 1s described by a joint vector (array)
JNT(3) which 1s interpreted as joint j connects segment JNT(j) to segment j+1.
The use of this joint array limits the model to a '"'tree structure', Figure 4.7.
That 1s, noclosed paths can be found which leave a segment via a joint and
return to the same segment through another joint. This also requires that a
numbering system be used in which joint ) 1s associated with segment j+1.

This 1imposes no constraint on the tree structure.

The program 1s so written that JNT(3) may be zero, defining a null
joint. This results in the capability of defining sets of disjoint segments.
Segment 1 1s always taken as a reference segment. For each joint ) where
JNT(3)=0 segment j+1 is the reference segment. For each such set of segments
the i1dentifying numbers must be sequential. The lowest numbered segment in each

set 1s used as the reference. An example of this 1s the following:

(1,2,3) (4) (5,6,7,8,9,10,11,12,13)
where JNT(3) and JNT(4) are zero. Thus segments 1,2,3 would be treated as one
set of connected rigid bodies with segment 1 as a reference. Segment 4 would
be an 1solated segment with 4 as a reference. Segments 5 through 13 would be

treated as a connected set with segment 5 as a reference.
The integrator integrates for the linear motion of the reference seg-

ments only. The linear position and velocities of the other segments are de-

termined by use of a chain algorithm (subroutine CHAIN.)
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Figure 4.3 EXAMPLE TREE STRUCTURE FOR FIFTEEN SEGMENT MAN
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2 Nnraaca
o prToTI

rom model considerations. For instance,

constraints at the joints and arise
t point in common (linear position con-

a joint the segments must have

c

straint) also the type of joinis specified such as free, pinned, or locked
require constraint equations {(joint angular position constraint). The third
equation pertains to other more general types of constraints such as a fixed
distance between points on segments, Or sliding or rolling motion of one

segment over another segment or over a vehicle surface.

Sl Nof +/4ir oD P

=1/
m Y T %o

Ym Ym 7 i
™m FAN ) 2, (T m
— Tr - =
@ v, ~2\0, ”/()@f"/( (4, 75, /@ D, =i, (4 8)
&

where the matrix P depends on the type of constraint and q 18 determined
by adding a constraint equation to the system of equations. The constraint
equations are derived i1n following sections.
*Note: In all cases P may be taken as the i1dentity matrix or it may

be chosen to impose symmetry of the equations where this 1s possible.
These equations, along with the constraint equations, are referred to as the

system equations



4.3.1 Linear Position Constraint

Consider the joint j connecting segment n=JNT(]) to segment

m=)tl. Because it 1s assumed that the joint does not separate, the following

expression

. — -z
an-[?n 5, =X, *D, 5, %.9)

holds for each joint. These equations can be used to calculate Xn the

position of segment n, if J»,Jm and X,, are known. Differentiating equa-

tion (4.9) results 1n

’\;n"pr;z/‘”n@% )sz*Dz;zI/‘”"rm ) (4.10)

noting that Ta, and 7;p are constant in their local reference system. Daiffer-

entiating equation (4.10) results in

. 40 ar.
an Dn [wn®rm +mno(m’;g1;§/] =mepm “’m@rﬂu *wm@l/l“n’)@rﬁu )] (4.11)
which relates the accelerations. Rearranging yields.
v i . 1 . iy >
Ky Xm—2, ﬁ"; @ u,)* D [rMJ ® wm)= 2,, E"m@/‘“m@ Ty, ):} -7, Evne(w”m;,,j]
(4.12)

Equation (4.12) is the linear joint position constraint

equation

4.3.2 Angular Joint Constraint

Again consider joint j connecting segments n=JNT(j) and
m=j+l. The free body method of describing the motion of connected rigid
bodies require specification of the constraint torque at the joint. The
particular equation defiming this torque depends on the type of joint con-

sidered.
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Consider the following two cases:

CASE 1 Locked Joaint

The relative angular position remains constant thus

the direction cosine matrices satisfy the equation

C: -z
D la (4.13)

where C 15 a constant matrix.

Rearranging 2, C=0;f
Differentiating, ﬂﬂf /an)C=ﬂn'1/mn@)
eliminating C yields _Dn;l . ¢) Dy, =Dn_l/“,z ®/Dn
which implies

Dm_l w m=‘07;1wn/ as the velocity constraint.

Differentiating and rearranging ylelds the acceleration constraint as:

B 6, -D7w =0 (4.14)

CASE 2 Pinned Joint

The segments are constrained to rotate about some
pin ax1s which 1s fixed relative to each segment. Let /#,,,/4, be umt vectors
defining the pin axis in their respective coordinate systems. Then the

position constraint 1s

-1

O b= Dn b, = h
(4.15)



where /7m and A, are constant and h 1s the pin axis

in 1nertial reference.

Differertiating yields the velocity constraint

'Dn—l(“’n ®)/7n=pr;zj /wm 8)/712'2

or

D (e p0hy) D5t (o @)

(Note: when the matrixw ® operates on a vector, it is equivalent to the
vector cross product ;e (w @)/=w®/.) This velocity constraint may be
interpreted as specifying that the components of angular velocity perpen-

dicular to the pin must be equal. That 1s
D50 = Pl 9 ) = Dk (9 P b - )
(I-hh.) DEw = (Fhb)DEw,

or

{Note: h is a column vector, h:is h transpose [a row vector], hh- is a

square matrix. )

Differentiating again yields the acceleration constraint
-7 . -7 z . -
Dy g @byt Dfw e (w,0h,) =07 6,0k, + B3, 0(s_,@h,,)
which may be written as
<z - i S 4 -z
he [ﬂn 67Dy Grr =50 @ (0 @ 1) ~Dry 077, @07, © )
Taking the dot product with h yields
O:A'Epn_!wn @/‘“n ®/p /—ﬂrr;j/‘”m@ Ym 0/7272??2}]

= (“’n'ﬁnjz_wn"”n’/“’m'ﬁm)z*wm' “m
which may be written as
W, wn-/wn./;n/f—_ © O o (0 A )

This is satisfied if the velocity constraint is satisfied.

Taking the cross product with h yields
7 . -J - - 4
S [/7@(-022 gy Do, wm)J: W, g D 7w @by =9 it bpyy Doy 970 @ A
which may be written as

(L=1$h) (D G D6 ) = 9 Py D0 @ =0y Py Dy 01y ® iy
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(Note: that we have used the matrix 1dentity /-//4 =—-/® A®  which 1s valid
when h 1s a unit vector.) In addition, we must impose the condition that the
constraining torque have no component on the pin axis, that 1is

hH z=0
This may be put in matrix form as #hH-1=0 and added to the above con-
straint on accelerations to produce a single constraint equation for a pinned

joint as

(Thh ) (D7 5D 6 )+ Abh to( 6P ® s ) Dy 5y @

(4.16)

where A 1s an arbitrary scalar (A#0)

We note that since ([—/7/)-} t=t the original system equations
may be written as

¢?7. L:)n. f@/.[‘ﬁ/ﬁ/l.‘:dz
3

/X ([—/m-/ﬁazm 1)

This form has the advantage of making the system matrix

symmetrical.

1.3.4 Additional Constraint Relationships

In addition to the joint constraints developed in Section 4.3.3,
other relationships are derived 1n this section for two types of distance con-

straints, a rolling constraint and a sliding constraint.

TYPE 1

The zero distance constraint requires a point on a segment be
the same as a point on another segment, as indicated in Figure (4.4). In gen-
eral, consider two segments m and n such that T locates a point 1in segment m
relative to 1ts own c.g. and T locates a point 1n segment n relative to 1ts own

c.g. The zero distance constraint equation then 1s written as:

4



-1 -
Koot Do K2 T (4.18)

Xm»Xn locates the c.g of segments m and n w.r.t an inertial reference

system.
Twice differentiating this equation yields the constraint
equation
g -z . -7 .
X XDy T ® Wy # D, T, @0 = 1
m ‘n+m m m”tn ¥RV, (4.19)
where

-z -1
, =D, [wn@/wn@rn)] -0, [w;{?(‘”m@rmj
TYPE 11 Fixed Distance Constraint

The fixed distance constraint allows a specified point on one
segment to be a fixed (constant) distance from a specified point on another
segment, as illustrated in Figure (4.5). Consider two segments m and n
such that r,, locates a point in segment zz and 7; locates a point 1n segment
n . Also define o to be a fixed distance vector between these two points.

The constraint equation 18 written simply as

2 2
pip=d’= |yl
(4.20)
where
=N+ D v Xm Dy
P Am L i Agn Tn (4.21)
Twice differentiating eqn (4. 20) yields
.a 2
VI
where
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SEGMENT n SEGMENT m

INERTIAL REF.

Figure 4.4 ZERO DISTANCE CONSTRAINT

[

SEGMENT n SEGMENT m

INERTIAL REF

Figure 4.5 FIXED DISTANCE CONSTRAINT



= Kt D |G @ ¥y 0 (0,05,

_/i/;,—ﬁn.l [ a]n ©T, +w,® (lu a® rn/:l
(4.22)

rearranging

Xm—XQfDm'J Gy ‘X’rmJ - D,;z [:u'),z @ rnJ

5057 [vn (a5 [ omon]

For the distance constraint the constraint force q must be directed along

P Define then a unit vector h in the direction of/a .

-2 X # D’ * m‘/er'pndzrn
12| le # Dy T X~ D7 T,

(4.24)
Although only the magnitude of the constraint force q need
be computed, for purposes of symmetry and computation logic the vector

nature of the constraint equation 18 maintained.

For this reason the constraint force 1s defined along h by
é-g, then maintained as a vector by /7/&-?) . The same procedure 1s

performed on the constraint relation yielding the following:

/;/ | Xk D [ i@ ] -2 [ © %

A(L-hh,) g=/7{/;-[ﬁn"wn®(mn® . )_p,,;fwm@/wm@rm)]_%@(4.25)

A is an arbitrary scalar # 0.

TYPE III & IV Rolling and Sliding Constraints

These constraints provide the capability of modeling the
motion of surfaces which are rolling or sliding over each other. A diagram
of the geometrical configuration and appropriate variable definition 1s pre-

sented i1n Figure 4.6. The relationship at the point of contact 1s
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Aora ’“ﬁmj/‘/;n AT )= X *ﬁr;’[{*rn) (4. 26)

The time derivative of this expression 1s

¥ z o /7 L i_¢ AL o/ 7 O
A bale < & /7 » I LT =A,, L w & r T
m T Em T Ot " o )T i Sy T AL Ya S (At Tty T, *

(4.27)

The relative velocity of the surfaces at the point of contact 18

— y -7 y i
IC?[L’Xm"'mem@ ’/m"rm)_)(n_ﬂn mn@/,/n ;rn//

(4.28)

The rolling constraint requires that the relative velocity be zero and the
sliding constraint requires that the normal component of the relative

velocity be zero. Thus

V/?[:L 0 for roll
* V.= O for Slide
AE (4.29)
We have from (4.27) and (4.28)
s D ety
#eL T T m TR IR (4.30)
Note that for the rolling constraint, Equation (4.30) requires that ﬂml rrrllz_pn

* Note  The prime on T and T indicates the time derivative of the respective

variables 1n 1ts local reference svstem
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SEGMENT m

SEGMENT n

INERTIAL REF.

Xm,)(n INERTIAL REF. POSITION OF c.g. FOR SEGMENTS m AND n.

Ao A, OFFSET OF SURFACE m AND n FROM c.g.

T,,.T, VECTOR TO POINT OF CONTACT EACH IN ITS OWN LOCAL REFERENCE FRAME.

£ NORMAL TO SURFACE AT POINT OF CONTACT.
¢  CONSTRAINT FORCE

Figure 4.6 GEOMETRY FOR GENERAL ROLLING CONSTRAINT
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The distinction between rolling and sliding 1s made by com-
puting the force required to impose a rolling constraint. The magnitude of
the tangential component of this force 1s compared to the magnitude of the

normal component times a specified friction coefficient.

Thus, /Zf (tangential force) 1s compared to/gl;/nl
where fX is the static friction coefficient and ‘?,l 1s the normal component

of the constraint force.

If |7¢] = A|fa| then the surface characteristics will
sustain a roll. If g |>0 (gn. sliding will occur.

When sliding occurs the direction of the constraint force 18
along the vector h where
h=(t=0L)/ 1,02
( v Az (4.31)
where #1s the normal vector, f 1s the coefficient of sliding friction and vV

1s the tangential component of the relative velocity which will be equal to

1 = .
1//?[/_ for a true slide (since ¢ 1//?54 0] )

The constraint equation 1n acceleration form are found by
differentiating equation(4.29. They are:
for rolling;
X D—merm/®me f_D )@w— 1/»0 ofw, @%;‘ /}_/D L ®
177@// AT, //_17” w, ®T —ﬂm rn@r’”
and for sliding; (4.32)

K[Xm—ﬂh'147frm/® u}m—/\ynfﬂn{/,/”,‘rﬂ/Q w”/J =7 [ﬂn'f/wna(’u)ﬂ@//”ﬁrn//
_D;;wm ”“m@/“/m"rm/)"ﬁ;rw,,@ rp’_ﬁb;lwm@réj—f. (ﬁ T _ﬁnj m//

(4.33)
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and /f—/?f)-/g'=0 , where t 1s the time derivative of t

The two equations for the sliding constraint may be combined

1nto one matrix equation as

bf{/;n‘ﬂm-j//m" 5,/@ me-—)'(;/ﬁn"%,«r”/@ “.’7_;! #A (j‘ﬁb)g
[ D00 (8 ) B (18 (170 i 5)
f'gz-j"’rz ® r;z,' prr;z Wy ® r”"] -h l: ) [‘D;Irn,_ﬂrgrm,) (4.34)

The right hand side of these constraint equations contains
the unknowns ¢, r’n and 1, which depend on the kinematics and the geo-

metric properties of the surfaces.

The contact routines normally will compute the point of contact

which yields r ,r” and the vectors t and h.

In the program when a roll-slide constraint 1s specified, no force

deflection characteristic 1s specified but the impulse option should be used to
insure that the normal component of relative velocity is reduced to zero. That
1s one should specify the impulse option with a coefficient of restitution equal

to zero. This will insure that t - VREL=0 at the instant of first contact.
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Calculation of rr;, r;l, t in the Program

The current version of the program considers ellipsoid-
plane (Subroutine PLELP) and ellipsoid-ellipsoid (Subroutine SEGSEG)
contacts. Since the calculations of é)I;n’ and T”'are similar the equations

will be derived together.

The equation of the ellipsoids are
T s Ay T = 7
T, A,T, =1

and the equation of the plane is

L

where /4’,,7,4,7 are the ellipsoid matrices, constant in the local coordinate

systems and t 1s the normal to the plane, a constant in the local coordi-
n

nate system.

For the ellipsoid plane contact we have (Figure 4.7)
4 /47?7 rm_ s _7"
L Ayt ] 2= -4,°2, (4.35)
m
For the exterior ellipsoid-ellipsoid contact we have

(Figure4.8) PR s T, e ATy

" ) (NEas

For the interior ellipsoid-ellipsoid contact (the exterior

of ellipsoid ﬁm contacts the interior of ellipsoid Azz ywe have (not 1llustrated)

ok Ao Yy _nZ T
77 )/’J’”rﬂﬂ “ |’9ﬂ |
For convemence we define (for ellipsoids)
7 o= fm _- 5,
m 2 ; f77 T
‘ cicd ’/9)7 Tl

Note t=1,, N - :-Dn ‘ ’n



UNIT VECTOR NORMAL
TO PLANE

SEGMENT n

Figure 4.7 ELLIPSOID ROLLING (OR SLIDING) OVER A PLANE

SEGMENT m

SEGMENT n

Figure 4.8 ELLIPSOID ROLLING (OR SLIDING) OVER AN ELLIPSOID
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Differentiating the equations of the ellipsoads and planes

yields
Tm m =0
r /l = -
nln =0 afso ¢.-¢& =0
Dxfferennating the ellipsoid plane normal equation
-7 77'7 _1 A /q T *
me ,A {_ ’4mrm _27_._’2__.._—”7 =-t= —_plw ¥4
' ‘ A r l n °”n 77
7 ml l m Im

which may be written as
/

D7, @ by w,n[]rmtm]wr - f=-Du,

7 T

Differentiating the exterior ellipsoid-ellipsoid equation
A - At
[I ‘mt } 2 :‘f"“ﬂ n@gﬂ-pnl//_ ty) 22
14 7 Vo Tl

-z
—ﬁm wm o fm
Differentiating the mterior ellipsoid-ellipsoid equations

yields
SIS AR/ [[ L bri) i Oy ”7

ln\

777

If we add the relation
1 -1 ’
Yari O,y =0,
to the above equation we have a sufficient number of equations to solve

for ¢,r,,, v, - These may be summarized as follows:

£ 0 2] [0 [imo bl
0 ~ =0, % \’%@ ¢,

-2 T :
me 2, 0 | Lf i L'%?ﬂ | (4.36)
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where f=[[‘l‘m fm‘] /—927—

+ Attt

1A o mm
and
F=0 for plane
- 4,
F =7 /f" t,, l‘,,',)er‘ for ellipsoid 7, » external contact
n'n

— internal contact

A 1s an arbitrary constant chosen such that the matrix 1s nonsingular

(in practice A ~-1 ).
I

The solution may be written in the form

-t -~ _ = < C7'w
Dpy = CW T CE e
-7 -~/ ‘
D/-r; r)n, =5, %, - VPEI
t - 0 [wa® €0 + Frx, ] (4.37)

where

- _ —1
W= Dm w,,@t,,, ‘D,,’LU,,O trv * D, Am Dy VREL/’A»'TM\)

for the ellipsoid-ellipsoid contact

] -1
C= Dny A, Dm/’Amrml + D,, Ah D,., <f.’ Anrhl) (4.38)

and for the ellipsoid — plane contact

)
C = Dpm Ap, D’"AA ol (4.39)
mim
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4.4 TENSION ELEMENT

4.4.1 Specifications

The primary purpose of the tension element (TE} 1s the sumu-

lation of the longttudinal muscles of the human bodv. It behaves statically ir

manner

a manne mular to a linear s

stmu ring n that when 1t 18 st

1at when it 18 subjected to a tension
force —I':, it increases 1n length by an amount proportional to F. However,
1n contrast to a spring, the TE displays no stiffness when subjected to a

compresston force. In this respect it 1s similar to a longitudinal body muscle.

The TE has been designed so that, under the action of rapiudly
varying tension forces, the distribution of strains within the element 1s
uniquely defined by the strains at the two ends of the element. As a conse-
quence, the equations of motion of the element are simplified: they depend
only on the posttions, velocities, and accelerations of the two ends of the

element.

The computer program tnputs required for complete specifi-

cation of the TE are denoted by Lo’ MA’ MB, MAB,k’ d . These quantities

are defined 1n the following discussion

Figure 4.9 depicts the geometry of the TE when subjected to

a static tension £

N T/
F—— AT

L

Figure 49 TENSION ELEMENT GEOMETRY
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The two ends of the element are denoted by A and B. In connection with

Figure 4.9 quantities are defined as follows:

L
Ae

Loz length of TE when the tension force T s infinitesimal.

length of TE when subjected to a tension force

distance from the end A to the center of mass of the TE

/= the value of,/c when the tension force F 18 infinitesimal.

The cross section of the TE 18 treated as negligible. Thus,
the moment of inertia about its long axis 18 negligible. The tnertial prop-
erties of the element are completely determined by the quantities L and /

defined above, and the quantities MT and ¢ A defined as follows:

MT=total mass of TE

P, ¢B=moment of inertia of TE about the point A,B and about an
axis perpendicular to the long axis of the element when

the tension force-f 18 negligible.

In terms of the quantities L, Lo’ MT and ﬁA’ the quantities
MA and MB and MAB are given by

Me=P4 /éo" (4.40)
My = ?ﬁ/L: (4.41)

7
MAB=E(M]'—MA—M8) 4 )

The computer program input, k, 18 a force constant given
by

kz;‘) (4.43)
Q
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Where F denotes the magnitude of the static tension force ¥ . The quantities

f, L and LO are defined above.

To define the program input, d, it 1s noted that when the
TE ts not in static equilibrium, the tension force, F, can be expressed as
the sum of the force of inertia, the force of stiffness, and the force of
viscosity (or dissipation.) The parameter d 1s a constant of dissipation
defined by the relation

-— .
= dL

FdlSSlpathn
-

Where Fd denotes the force of dissipation and L denotes the time
1ssipation

rate of change of the length, L, of the TE.

4.4.2 Derivation

Represent the TE by the discrete system depicted in Figure 4.10

Figure 4.10 TENSION ELEMENT MODEL
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As shown, the discrete system 1s composed of N particles connected by
N-1 springs. The mass of theNth particle 1s denoted by mn. The postition
vector of theNth particle relative to the inertial coordinate system 18
denoted by ;n , F; and /‘—; denote external forces applied to the first and
Nth particles respectively. Since the element cannot support externally

applied torques, it must be coupled to other elements in such a way th

at it

will not be subjected to external torques (or force couples.)

The springs can exert forces of tension when stretched but

they cannot exert forces of compression. Each spring has viscous damping.

The TE 18 subject to constraints (not shown 1n Figure 4.10)
which insures that all of the particles lie on a straight line (regardless of
the directions of the applied forces ?;, and 7; ) and that the strains and
relative motions within the element are uniquely determined by the positions

and motions of the two ends of the element. The constraint relations are:

(th-7; )=8p (3-%,) (4.44)

Where the En are constants which satisfy

0=8, <&, < &,,,<8 1 (4.45)
—_— — 72=2 N-]
Putting r,=1, ’
— -
Ty= Tg

Equation 4.44 may be re-expressed

?n=/z—¢'n)§}f¢',,?} (4.46)
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The equation of motion of the TE will be obtained by the
D'Alembert method. That 18, the equations will be expressed first for
motion n the absence of the constraints, then the modified equations, which

take account of the constraints, can be inferred.

The equations of motion 1n the absence of the constraints tn
(4.46) are

< ﬂ_f)_&_f Vv . gD
el 0% om " 9w, o
(4.47)
Where T, V, D denote, respectively, the total kinetic energy, total poten-
tial energy, and Rayleigh Dissipation Function for the system depicted 1n
Figure 4.16. T, V, and D are expressed as functions of the coordinates

T, and velocities Tr of the particles. In (3.47) 9/@1‘-‘n denotes the gradient

—
with respect to the components of T, .

To obtain the equations of motion which include the constrauats,

R —

T, V, and D are re-expressed as functions of I,},,I},,I‘B I‘ by direct

substitution, employing the constraint relations in{@@.46L The equations of

motion can then be expressing

a a"f/a"f 81/}&0 =
Rl N R A

214 31‘ ﬁrﬁ dry ©A
d /a7 a7 2V D N
el a5/ o, * 7%, "3;’2 =7y (4.48)
where
- X 8?;1 = 2 )
?A=§=1 E’(&an*édhy

*Since we are working in 3 space 1t seems simpler to write equations (4.47),
(4.48) and (4.49) 1n a vector form where gach equation represents 3 equation,
in the more conventjonal notation where I, would have 3 generalized coordinates

Qn,,in. , f;._, and T, the coordinates Z,. ‘3"‘ 'Z"' . In this scheme (4.47) would
be written as 3

- A Q__D = /:; +F’ e = /,3
F 93 ) TY S ¢



—

%’B-*ﬁ ard (F A 4, ) (4.49)

7-2

From Figure 4.1( the total kinetic energy of the system 18
given by

z Z” L.
z =, My 1T, l
Substituting from (4.46) and rearranging leads to
7 a2 1 iy 2 ST
T= %Mo |T5| “r 2 Ma | 55| *# Mag (%4 75)
(4.50)
where
2
My = ,,i.' m, (]-:n)
o 2
Ms = ,Z,,mn g72
N
Mas "';'Zmrz g72(]_‘:-72}
(4.51)

The potential energy, V, contributed by the stiffness of the

springs may be expressed

V-3 Z ko (44)* A4,>0
=0

Ady<O
(4.52)

Where A/n denotes the relative elongation of the spring connecting the nth and
(n+1)th particles, and 4,, denotes the corresponding force constant. The
second of the relations (4.52) expresses the condition that the springs

exert no forces of compression. Evidently,

A"/ﬂ: !?;Ul—?;zi—/?;zu—?;z!o (4.53)

Where [F;” —rj,l° denotes the length of the spring connecting the particles

n and n+l when this spring s subjected only to a negligible tension. From
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(4.46)
(F;z,fz_?n) = (gnffgn) (?.‘9‘?; )

(4.54)

and so

Ajf (577*1 3, [ | %5 - _4|'Loj

(4.55)

Where L, denotes the overall length of the TE when 1t 18 subjected to a

negligible static tension.

Substitution of (4.55) into 4.52) leads to

V= ;{kﬂf‘;—l’;‘-[{!" 1f )rﬁ—rﬂlﬂo
- 4.56)
V=0 otherwise (
Where
b 54 ‘
:77=z)(/77 (67076n) (4.57)

The Rayleigh Dissipation Function, D, s equal to half the
rate of dissipation of energy resulting from the viscous forces. It s
assumed that a dissipation element s connected between each pair of
particles.
Thus,

z AN 1 . 2
D=3 o, (44, )
nsal ” 7
(4.58)
Where d, denotes the dissipation coefficient for the dissipative element
between the nth and {n+l) the particles and Ajn 18 defined in (4.55).
Substituting (4.55) into (4.58} one obtains
‘%;—%All
(4.59)



where

=5

7sZ

A (4.60)

Substitution of the relations (4.50, (4.52) @4.59) and (4.46)1nto
(4.48)and (4.49) yields the equations of motion for the TE:

My TyrMyp T4-d ra—rl/-/g-/;

Mﬂ raf%ﬂ r”fd(fz—rA)f@=f;

(4.61)
where
A= k(5=%) [1- Lo/ 1530 # Ig-5)>L
%0
otherwise (4.62)
The definitions of the parameters M M M K, d

A’ B’ AB’
given in the first subsection follows from the equations of motion in (4.61)

and the relations in (4.51) and (4.46)

For purposes of implementing the tension element 1n the
framework of the program, let the point Ta be fixed in one rigid segment
and let the point rg be fixed 1n another rigid segment. Then the following
relationships may be written.

-7
1y =X #* Dryy Ty
-z
r5=/Yn "pn =
where X X -1 . f th £ d ivel
im?m ~location of the c.g. o segments s and 5 respectively tn

inertial reference.

Ty = location of point T, with respect to the c.g. of segment m

this 1s a constant 1n m’s local reference.
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r, location of point Ty with respect to the c.g. of segment

this 1s a constant «n 7% local reference

D.,B, are the direction cosine matrices of segment ™ and seg-

ment™m

The nputs required for each tension element are

Y,,,72,7, 22 and the values of the scalars A/, Mb,M/Jb,/{)ddrzd L,

With each tension element are associated the two constraint
forces FA and FB' Equations 4,6l are the constraint equations. The
force(- FA)and the torque(—l‘m@ﬂm/f,)are applied to segment 72 and the force
(FB)and the torque(l‘n@ D, FB)are applted to segment A (This 18 (:]one by use
of the system matrices A13 and A23). The expressions for ?,?5,1;,1_';

are gwen:

rﬂszfﬁm_jrm

I-‘/q=X.m7‘ .Dp;l‘“m@ T

Fym Xyt B 6,y @7t Dy, @ (0,8 1, )
Tp= /Yn "pn.lrﬂ

I:J:Xﬁfpn-jwn ® T,

™= X.ﬁ" pn'l w9 rn"'pndwﬂ@(wn ®r77)

where ws, and %, are the angular velocities of the respective segments,
Substitution of these terms lnto the constraint equation 4.61 results 1n the
form needed by the program. The simularity of this constraint to the other
types of constraints (fixed point, etc.) should be noted. The tension elemant
1s another example of a case where the system equations are non-symmetrical

as was true for the sliding constraint.

94



4.5 FLEXIBLE ELEMENT PARAMETERS

The flexible element is intended for representations of complex,

+h

nf tha him Ticnnlaw a ars o
of t icuaar, tne neck, torso,

an TesdIn
Hne  nuiall LUl

flexible portions y, including, in pa
and trunk. It 1s composed of a chain of N joined rigid segments., Each joint
has three degrees of freedom with three corresponding stiffness constants. In
addition, each of the N-2 interior segments of the flexible element is con-
strained so that 1ts orientation 1s uniquely determined by the orientations of
the end (or outer) segments of the element. These constraints have been intro-
duced to approximate the effects of body muscles which are so connected that,
rather than acting on individual joints, they determine the overall flexural
characteristics of the represented body member. Fidelity of representation can

be insured by determination of flexible element parameters from measurements.

Table 4.1 1s a summary list of proposed computer program inputs for

the flexible elements. The last column of the table indicates where the defi-

nition of each input is given.

The orientation of segment n relative to segment 1 1s designated by
& -}
the three angles éhn, . n (see the discussion in the context of Figure
4.12)> In order to avoid singularities in certain transform matrices employed
in the calculations (see equation (4.101) it 1s necessary to restrict @x to

the domain
-7 < th< E%

Since there are no restrictions on the ranges of variations of aﬁland ezn, 9,n
should be chosen for the angle of bend maximum range of variation. For

example, 1n the representation of the human torso, forward bending should corres-
pond to the angles éhn and not to é}n. é}n would correspond to sidewise bending

of the torso. It should then be possible to satisfy the above bounds on &,

since few people (1f any) can bend their torsos sidewise through 90°.

S5,



SYMBOL

¢

ﬂ/j%)

Fep

Mo

9’!’1 ez,' N 93"

(9 :1 3
» =71, N-T
C,4 27,3
” =71,N
‘rf =7,3
» =171,
&,/_ = 7,3
71 = 1,N
¢ = 7,3
7 = 1, N
» o= 1, N
n= /N

Table 4.1
COMPUTER PROGRAM INPUTS

FOR FLEXIBLE ELEMENT

BRIEF DESCRIPTION

set of bias angles

number of segments 1in
element

first-order taper function
1n constraint relation

second-order, interaction
taper function in con-
straint relation
second-order, quadratic-
form taper function 1in
constraint relation

moments of 1nertia elements
of nth segment

mass of nth segment

yaw, pitch and roll
angles
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WHERE DEFINED

Equation (4.64)

First paragraph
Equation(4.64)

Equation (4.64)

Equation (4.64)

Context of Equation
(4.69)

Context of Equation
(469)

Context of Equatiaon
(4.63)



EXTE%\L JOINTS
SEGM

EXTERNAL
SEGMENT

FIGURE 4.11 MODEL OF FLEXIBLE SEGMENT
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In the rest of this subsection, all of the basic geometry of the
flexible element, except details on the joints, 1s presented. The latter are
discussed in the third subsection. Development of the equations of motion 1s

undertaken in the second subsection.

As noted above, the flexible element 1s composed of N joined seg-
ments which are labelled 1 to N. In each segment there 1s a rigid local coordi-
AR A» Ay
Cs

nate system with orthogonal unit vectors e, , e, |,

As depicted in Figure
AR
4.12, the unit vectors e, are aligned with the principal inertia axes. Zn
1s the position vector of the c.g. of segment n.
A
The orientation of the 8: vector of the nth segment relative to
segment 1 1s shown in Figure 4.12 and are 1in agreement with yaw, pitch and roll

angles described in Figure 2.7.

Figure 4.12 COORDINATES FOR FLEXIBLE SEGMENT
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At
The first rotation is through an angle 9,n about €, , the second

AT . .
rotation is through an angle +6"n about the new €, ; the final rotation is

A . A4 .
through an angle 9-’n about 6177 {which is the new ¢, .} The relation
A AN AM AT er AT .
between e1 0y ez_ ) E'J and C, s T2 83 1s
4
e 8 St 8 3y
e, 1 0 0 \ cos @, 0 -578,)\ [ cosé, 78, o) €,
s | e
€, = 0 o586, 574y 0 ! g “S5tn 6, 8, 0 ¢,
N6 k 0 6, 0 1 \€1 J
e, 0 TSNy, (056, \+ se7m 8,, Cos &, 2 3
(4.63)

In accord with a suggestion of Dr. Ovenshire, 8,1 64,6, will be

represented by the second degree polynomials in the relations

£
G, = 6 * ";/(”) On T Fe2(7) 8y + £, 3() Y

< » e ”»
* R, () &y %N*ftz(”) Esn Gy T Fo3() iy O2N

A ) 8y + R, () g:N AL () Q:N

7= 2,N
L : 35 (4.64)
where
3 ' ‘ 4
8,5, = a bias function with 8,, =¢ lor 7 =N
’(’Cf (N) = J“; s Peg (M) =0, ic/{(/v)-o (4.65)

The bias functions Q‘i and the taper functions 7“‘; (»), Feyp ), 71,‘; (») are

all program inputs.
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The joints are located in the standard manner:
Ry =25 T, (4.66)

where -E; 1s the location of the nth joint, also

p—. e

R, =2, ., * ‘leh 7 =7, N-1 (4.67)

——

where r.s aTe defined in Figure 4.11.

The connection constraints (that 1s, the condition that the joints
connecting segments do not pull apart) are contained in the relations (4.66)
and (4.67). .

The introduction of the bias functions, 6?;7 also allows the latitude
of choosing the principal axes for the nth segment to coincide with the unit

A7
vectors <, . Thus, the Moment of Inertia Tensor for the nth segment 1s given

by

(4.68)
The inertia elements ﬂln are program inputs, as are the masses M, of the

segments.

The Equations of Motion

The translation equation of motion of the nth segment of the flexible

element may be expressed

— _ 2 —C — -0
M‘h 5 7 Fl 8711 +F77 +F7l 57; 4.,&‘7,
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where

i

Z'T'H

b

n
(¢

)

[«

-h
3

where

£

b

<

b

Z

My s

#

and r, are as previously defined, and

= an external applied force at the point with position vector Ea
(see Figure 4.,11)
)

= an external applied force at the point with position vector
(8,

= an external force applied to a point of the contact surface

which is rigidly connected to the segment n

= the summation of all constraint forces acting on segment n as

a result of the configuration constraints on the flexible element

The rotatignal equation of motion of the nth segment may be expressed

<
¢

- - - - = —Jonrts -
s | = + + r
Q7 ”} Ny Spy * Ny pn * 7 ®F, + N, 7

(4.70)

and /—-‘;c are as previously defined and

total angular velocity of nth segment

= an external torque (that is, force moment and/or force couple)
applied to segment 1 through application at the point with

position vector £, .

= same as N1 except applied to segment N through application at

the point with position vector (EN + /"_'7 é 1”).
= position vector of point of application of the force F;:relative
to the c.m.of segment n. This vector depends on many things

including the dimensions of the contact surface.
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— JOINTS
N, = net torque applied to segment n as a result of stiffness of the

Joints which connect this segment to the adjacent segments n-1

and n+l.

h, = the summation of all constraint torques acting on segment n as

a result of the configuration constraints on the flexible element.

In the successive sections, the necessary expressions for forces,

torques and constraint relations are derived.

Expressions For Torques Due To Stiffness Of Joints

Let ﬁn n+l denote the torque exerted on segment n due to the stiffness
of the joint between segment n and segment n+l. The definitions of N and
2JOINTS n, n+l
Nn result in the following equations:

=JOINTS _ = _

No h Nn,n+l B Nn-l,n n=1,N (4.71)
where

- -

N~,1+1 = NO,l =0 (4.72)

The'ﬁ£ n+] are computed using the same coordinate designation as ce-

scribed 1n Section 6.0 and indicated in Figure 4.13.




where

(31,%},5&) orthonormal coordinates defining the segment axes for

the nth segment

(4.73)
(&ﬂéf,e;) = orthonormal coordinates defining the joint axes
for the nth segment (4.74)

The program provides several methods of determining the torques be-

tween the segments defining the flexible element as indicated below.

ﬁ; n+l torque equations developed in Section 6.1 (4.75)
ﬁ; n+l torque equations developed in Section 6.1
»
using globolgraphic representation of joint
stops (Section 6.2) (4.76)
ﬁ; n+l torque equations developed in Section 6.3
{Euler Joint) (4.77)
N torque equations developed in Section 6.3
n,n+1

using the Globalgrpahic representation of the
joint stop torque . (4.78)
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The Force-Type Constraint Relations

From Figure 4.17 and the discussion in the context of (4.66) and

(4.67) the connection constraint for the joint between segment n and segment
n+l 1s
Z_ o+ = Z *or
» 77 »7r7 ]

(4.79)

These relations do not include the connection constraints between

the Flexible Element and other segments 1t 1is connected to. Differentiating
(4.79) twice yields

- = - i - _ - —_ — — -
r -2 ~w r = - (w T )
‘Zn+wn ® 72, ” 77 77»7o », »+1 w7,® 77® 77,77)+w77,1® wnﬂ@ r‘n,nrr
(4.80)
Let
2
f, = constraint force exerted on segment n due to connection

constraint between segment n and segment n+l.

Then =, BN -
= - = N
7())7 B 7[’77 7[77-7 7= 7,
(4.81)
N - = e - = torgwe
77-,7 = 7'77.77@ F‘n T Ther,n @ 'Fn-r v
(4.82)
- N o
where £” and », are the total constraint forces and torques on segment n
(previously defined)and
A o=y =0 (4.83)
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- — - — *or’ue

Forces and torques resulting from connecting the Flexible Element
Fy N, and N& . n,

to external segments are represented separately by £,

type constraints,

The Torque-Type Constraint Relations

This subsection covers the formulation of the torque-type constraint

relations. The corresponding compatibility relations are considered in the next

subsection.

The relations in (4.64) can be expressed more generally

_ L = 7,3
g =6,y [ 813 5 Gam > 937;] 7 = 2Z,N

<n
(4.84)

The functions G,, can be evaluated 1n a separate subroutine. This procedure will

allow more latitude for generalizations in the functional form.

From (4.84) 3
cx :;Z=7 Gmf [gm s O 6’377] 9;/«
(4.85)
where
G,,‘; = gg‘—”—— n= z,N
N (4.86)

Now, the éLn are nonorthogonal components of the relative angular

velocity Zz;f-&g From (4.65) and Figure 4.12

& - =97ﬂcj+%nc1 7,

Al : A2 - At AT
- r &
% 4 +é [ 61 5L77€7” 2 C,OSQ,??:I

(4.87)
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-7 At
Put 4 = CJ
-5y AT ATl
a, = -e sw»ég, +re, casem
= 2 = 77
2, = <,
(4.88)
Then, (4.87) may be reexpressed
3
o, -, =0 e &
7 .7 c 77 ra
(4.89)
- »
Introduce reciprocal unitary vectors %a such that
— 77
7, = 5} (4.90)

From (4.85), (4.89) and (4.90)

-1 z=7 [ Ke1
or, employing (4.89)
— —- + —_ s
W, - &, = Gn T,
(4.91)
where G; denotes the tensor
3 3
— - N
Z L a” Z
-1 47 ¢ ?"/ Ve
(4.92)
Rearranging {(4.91), one obtains*
— + — -+ -
&y * (Gn-I 7 —Gn C W), =0
(4.93)
7= Z.,N"

So (4.93)

-
*Note that G, =7 (where I denotes the identity tensor.)

vanishes identically when n = N.
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Differentiating (4.93): .
R , o .
“'Jn*[Gn"I]'aJ’—G -wN

7
*+ — + >~
= -G, rw, +G, -4,
(4.94)
In employing (4.94) , it 1s to be observed that
- 3
- A
aj?? =Z w?': e':v 7 = I,N
c=7
(4.95)

A logical base system in which to express the elements of the tensor

Al
6; is the €, system. In this system

”
(4.96)
=N
To evaluate G": ’ a;" and 1‘-;_ can be expressed in terms of the unit
AT
vectors €

¢

From Figure 4.12

é\”_ 31 casa At a1
; =< , 57 wse"] + €, cos 92__” 5¢m 9,” -C, sur 91_,)
(4.97)
Substituting (4.97) into (4.88) yields
3
- »” AT
a, = 2;7 c‘; e}
/ (4.98)

107



where

o 2 7 \
” = -
(C‘} ) = Sen &, rcosg,, 9
Cos & casé co5g, Seng  —Send, J (4.99)
b
- 7 A 7
A = c” c
‘ z.—;( oz Sz (4.100)

A ——
-7
where (C7) denotes the transpose inverse of ¢77, given by

- CoS 6,” sanel,,

cos 6,,,
- 5w 6’”]
Cos &, ,, Cos & ,,,
-7 Se» B, 5¢2 8 S &
(e”) = | - 77 22 ,cose,, @ 2T
Ccas &,,, Cas &, ,,

(4.101)
The singular points of the matrix in (4.101) can be avoided by limiting the

range of variation of & , as discussed in the first subsection.

Substitution of (4.98) and (4.100) into (4.92) leads :o
3 3 3 3 —~—
- A1 et -7 at
G =rr e jryen s, ()]
c-1 47 Kz1 £-71 <K « Z/) ¢
Comparing this relation with (4.96", 1t 1s concluded that
3 P ——
Gfﬂ:ZZ N‘h 6 /C-,-,\—7
Cp o k1 g1 X PRL : /15’
- (4.101)
,
The next step 1s to differentiate G77 .
From (4.96)
-+ - - — S 2 m oAt oA
G = @G, -6, 9w +r ) 5 e e
1 Vel 4 Lzs & L;{, L e
=2 Nt (4.103)
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From (4.102) o 3 3 —
= <G M)
R A
3 03 __ ;
» G Ny T
? kz %, 0 Cmes (€ ey
L 3 e —~—— ;
c” G ~)
’ ke ;J ek nisL (c )‘Jf
(4.104)
Now /\;} ac“’; . J C'/,:C
CK = _— 9,” < 9277
‘ 3 6,, 3 e
or 27
7 o7 .+ D7
& = Y Yin 2K 27
(4.105)
where
0-” 2 C‘:ZC
jck - 2
6, (4.106)
Also
f®" ~ ~
c” £ ) + £
& g] 2,2 27
4y 7% 7 (4.107)
where
-1
» a(C")
[l oy = lé Vo9 o= ‘/,Z 4.108
¢ 3 62 (4.108)
Further, 3 Je )
e =0 LSkt g
or =7 2 97,,,7)
3
Cree =7 '
£ = G @
ey KL 77T (4.109)
where
Gw;c[ = -———“‘——J 67”6!
¢ 65y (4.110)
Gy, 45, €31 be evaluated 1n the subroutine which evaluates G, g 2nd G,
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12 .
In summary,@, can be evaluated piecewise. First, the quantities &,
and ZZ are integrated to obtain Za, and ZZ . Then &,,, can be determined

from the inverse of (4.89):
. —Dh —— —
5777 =*¢ .(Q)N_“’;)
(4.111)

The quantities 49‘/\/,4

by employing the direction cosines of segments 1 and N, which are obtained by

=7 .3 can be evaluated either by integrating §,, or

integration. The quantities 4,, and 6'“7(4 =7,3 ,7=2,N-1) can then

be obtained from the relations (4.84) and (4.85). This procedure insures the

satisfaction of the configuration ggijtralnts. G;Kl»1 and G?nzl can be eval-

uvated fiom(4.109) and (4.110) nd Ql L, can be evaluated from (4.107)and
Py Py ~ -1 )

(4.108). Then C7 . (7 ’(cz,) and” (c )z, can be evaluated from (4.99),

(4.105), (4.101) and (4.107). Finally, (3;: can be computed from (4.105).
3
The discussion of the quantities which appear in the torque-type con-

straint relations 1s complete. In the last subsection, the representation of the

constraint torques 1s considered.

The Constraint Torques

From (4.70) and (4.82), the rotational equations of motion may be

expressed . .
— — {orce t‘or?ue -
Hy =7 "= = N, applied
7 =71,N (4.112)
where
— d -
oLt n g
(4.113)

— — - =" F_C - Jacnfs
N, applied = N, &, + N, 8, L +T  ®F +N;
(4.114)



77‘»‘7 - Tnn e fn - rn-r,n 4 #n-r (4‘115)
— tor?ae . .
and 7, denotes the constraint torques resulting from the constraint
relations
&/, * G» </, » v =
”=2,N-7

(4.116)

The easiest way to infer the compatibility relations among the con-
straint torques is by the Lagrange-multiplier method. If the constraint re-

lations in (4.116) are represented in the form

N
’” —

Z A_" .a./» =0 m=2, N-7

77 (4.117)
N-1

-Atar’ae - ”»

75, ‘Z Am * A (4.118)
m=2

where the ,2”, are vector Lagrange multipliers.

Comparing (4.117) with (4.116) it is readily concluded that

- Zorgee ,T

”, = A, 7 =2, NI (4.119)
N b4

—Zorgue _ Z = [ + ]

7 = A G, -1
vz ™ m (4.120)
N-1

—-for;oc - +

”n "Z A, G, (4.121)
m=2

—

Elimination of A,, from the relations (4.119)-(4.121) is immediate, and

leads to the compatibility relations among the torques.
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It 1s apparent that the equations of motion in (4.112) in conjunction
with the constraint relations in (4.116) can be solved uniquely for the Q_J;

and the i.m .



4.6 SINGULAR SEGMENTS (MASSLESS ELEMENTS)

In some simulations, it may be desirable to ignore the mass and/or
particular components of the inertia tensor. This 1s feasible if sufficient
constraints exist to define the motion (1. e. the system matrix 1s non-singular.)
Because of the generality of the program, it 1s difficult to establish a necess-
ary or sufficient condition for the assurance of a non-singular system matrix,
But, for example, a segment connected between two other segments tn a chain

with at least one pinned joint may be assigned a singular mass or inertia

matrix,

The program will accept these singular segments without special in-
put. If the mass or any principal component of the inertia tensor 1s zero, the
program will treat that segment as singular. It is assumed that the user wtll

supply sufficient constraints to avold a singular system matrix.

The effect of this singular feature 1s unknown, but it 1s conjectured
that f a mass or inertia component of a particular segment 18 very small, the
use of a zero value may eliminate undesirable modes of oscillation in the
system. As a matter of interest, the program will accept negative values of

mass and/or principal components of inertia*.

“In the spring of 1973 Dr. Ovenshire asked Calspan to make a series of runs
using modified masses and tnertia tensors. Dr. Kane at Stanford University
had shown that 1n a connected set of rigid bodies that the definitions of mass and
inertia were not unique., Calspan does not know what Dr. Kane's method is for
determining equivalent systems but the following theorem was proved by Dr.
Fleck at Calspan and used to compute accurate equivalent sets. Dr. Fleck

assumes that this must be Kane's result.
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Theorem on Equivalent Systems.

The following 1s a proof for equivalent systems applied to a system
of n rigid bodies connected by joints. Consider n rigid segments linked
together i1n a tree structure. That 1s there 1s only ome path through the

structure which leads from any segment to any other segment.

Define: fk be the location of the center of mass of the kth
segment
m, be the mass of the kth segment
s} be the tnertia matrix of the kth segment
k g
Jk be angular velocity of the kth segment
;;‘: be the location of joint j relative to the center

of mass of kth segment. This 1s defined only for

jownts linking segment k to adjoining segments.

f‘J be the constraint force actlng on segment k at joint j
which prevents the joint from separating
f‘;x be the lth external force acting on segment k
Pk location relative to ¢. m. of point of application
£ P PP
of the 1th force on kth segment
Tk be external torques (couples) acting on segment k.

The equations of motion of this system are:

< -+ 7 - F = N
7 X }Z fk, ; £ K=1,N (linear)
(4.122)
9—/( Sﬁl(‘dk) *Z ;k, o’t'KJ = Z ﬁq oFk,( * 7,; K=1,N (angular)
de¢ 7 Z
(4.123)
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Subject to the constraints
XK ¥, =X ‘F:(J $ = M (4.124)

Yeme

Note that the sum over j in the linear and angular equations 8

taken over only those joints which are directly connected to segment k.

Consider the transformation of variable:

N
»
= =0

7, ”, o+ 5K E1 SK

»* e —
Ze = P Zé‘k" ", a(rkJ ®

;‘* — —

T T T Gk (4.125)
v — -

f“) - f/(,; * CK

- _ — —

X = Xk ™S

e et — -
FKJ = IKJ ’ SKJ i(x!( *+ rk.l )
de

where Sk_] 18 the sum of the SL of the segments which may be reached

through joint j from segment k. The Ck are determined by the relation
* -_— - —-—
mK C, = Z SrJ %,
7

Theorem: This transformation leaves the equations invariant;

that ts the new equations of motion can be written as:

w e e -—
ey *Z’D;K 'Z Frt

# £
»* _. - - - - - (4.126)

179} - » ”*

‘5{—*(%( K)*Z*KJ @ i, =2 P @ Fee * Ty
’ ¥
Subject to the constraint
- ¢ =% . *
= 4.1

XK " rk.l x£ * r'J (4.127)



The proof 1s straightforward by substitution:

mi X0 230 = U 8 (G- 8D x (£, +6.,(%+ 1))

-~ h5S . —_—X
G +Xf, -mC + 34, o+ (G +E ) X
J ) J' J J J J

Then
x LR -% e -
MK Xk + Z‘FK = h’lk Xk + 2-1:1(
+y ) ) 1
because — — 3¢
M Co = Z 8, kg
J J
— — _ — —
and

b+ 20 =0
J

For the angular equation, consider the following substitution:

— i - = - -~ T —- 3 =
fzrk_;afﬁ B ;]0",(® F(/ ) JkaJ@?LkJ %Pki@a{
— — — - —_— —_ -— .
+ C @ Zjﬂj - 0, ®(m X} +:£ka’)+ > JkJ Fe,® (X * F, )
J

rearranging
—~x X — - —

Fe, ® ’[KJ - ;Z'f/q@ feg * (JZ—J/:} F,

—_—

T A - )
but 54, F oo (75) > g 47"
r.® (F = = r ® a
J o K, kJ 7 k E} o€ h9 G)OU&]
= 255 trg(r
dt gékj h(.) ® (\'k ® LUF)]
which results 1in
—R - — —_— — - — — - — -—
ro® - ®F, = ZF &f -2 p eF -4 36 Rre(hew
%: gJ 'FKJ !Z kg kg 5 k_, FkJ 1 ﬁ} kg d¢ 7 AJ k) 3 ;;)
*

# T - m> @ X
(z6, %, - ml 2,18 X
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and noting that

(Z46, F - m &*)=0
PRI K~k )
yields
— - - " — -— - — —_— —_
St 8f, 2, 0F, = I3 - _ d P -
J KJ k_j ’jakl ke % kJ&'FkJ %'f(’}@ Fk} d¢ ?JKJ kJ @(VKJGU-)';)

which completes the proof.
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4.7 DESCRIPTION OF THE MATRICES IN THE SYSTEM EQUATIONS

Now that the constraint relationships have been derived, 1t 1s appro-
priate to discuss the overall set of system equations indicated below 1in matrix

form.

MX A+ A, 9=4, Inear acceleration (4.128)
(1nertial ref.)

X + Ag, T =
Bt AyTtA, ¢+ Az ﬁ 2¢ Uz angular acceleration (4.129)

(local ref.)

with constraint equations of the form:

B, x +B,, o +B,f= A ig;gzr;igiar position (4.130)
1922_ © fﬁz’t t= [é joint angular position (4.131)
constraint
By X + B, 6 +Byyq=V other constraints* (4.132)
542 W = v* flexible element constraints

(4.133)

When discussing the matrices of vectors of the model, 1t 1s convenient to talk
1n terms of the 3 x 3 submatrices, or 3 x 1 vectors that are involved. For ex-
ample, the inertia matrix ﬂ for a model with N segments may be described as con-
sisting of N, 3 x 3 submatrices ﬂ( . The matrix ﬁ/ 1s a diagonal matrix (since

we are using principal axes as a coordinate system) with the

* Note, for the sliding constraint, or when tension elements are used,ﬁy and_@L
are not the transposes of A,, and 4,,. Thus when a sliding constraint or tension
element 1s active the system equations are not symmetrical.
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diagonal elements equal to the components of inertia about the x, y, and 2
local axes of segment 1. The matrix ¢ 1s the diagonal matrix which 1s the
collection of the n matrices ¢, . Similarly the mass matrix Mis diagonal
and 1s the collection of the submatrices m, which is a diagonal 3 x 3
matrix with the mass of segment 1 on the diagonal. Thus, unless 1t 1is speci-
fically stated to the contrary, when we refer to the element in the %’ row
and y* column of a system matrix we are referring to the ¢y *# sybmatrix. A
diagram of the M and ¢ matrices i1llustrating the above convention is pre-

sented 1n Figure 4.14.

Linear Joint Constraint

Consider the linear joint constraint equation derived in the previous

section and repeated below for comparison.
- -1 : -1 . -7 4
Xa = XD, (rnJ ® wn) 4 m(rmJGO Wy )z-Dm [‘”m®/‘”m@rmJ):] -7, [wn@/w”XrnJ)}
Compared with the system equation

B K+By wrB,F =V,

There will be an equation for each joint ) for ) =1,J. The
matrix B,, will then be an NXJ group of 3x3 matrices. For joint j there will
be the 1identity matrix in row ) column m and -I in row j column n of B, . A
schematic diagram of B,, 1s presented in Figure 4.15. Matrix B,, 1s also
J x N with the entry for joint j indicated in Figure 4.1 . V; then 1s the

right hand side of the equation and also appears in Figure, 4.16.
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Figure 4.15. Byq MATRIX ENTRY FOR JOINT j
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Angular Joint Constraint

The angular joint constraint equations have three different forms

depending on the type of joint specified. These equations are the following:

=0 free (ball § socket) joint

D,  w,, =B %y, =0 locked joint

d iz -
B Ipr)(DFES, D, Jrahh e
= [/wﬂﬁn}—(wm /Ym)J ﬂ;;wn®/in

pinned joint

The matrix equation for the above equations is

.42’0.) fﬁ246=[é

Again for ¥ segments and J joints 5,, will be J x N collection of 3x3 sub-
matrices. The particular entries depend on the type of joint specified. A

typical entry for joint ) is given for 3,,,5,, and V:, in Fagure (4.17).

Other Constraint Equations

The distance, rolling and sliding constraints derived in the previous

section are summarized below. The fixed distance constraint is

/7{”' [;(’”-Xn Dy T,y ® “.’m*ﬂn—jrnQ J)n:l}fl(]—ﬁﬁjfz'g
2 .
" =ﬁ//)'[ﬁ”.j 4, ®(u,07,)) ‘ﬁ”-f/“’m@“’m”rm)]_ u: ']

The rolling constraint equation 1s:
i b By (gt 5 )@ iy 277 [y 5] @

-1 y| -J 4 - - ’
V= Iy [‘”n Q(wn ® Uﬂ"rn }}J r D, w, @ rr)'ﬂmz [wmgﬁm@%/m”‘m}/]’-@nl“’m® O
The sliding constraint equation 1s

Do Xy Dl #5) s, D3 by 5, ) ] # A (1) 9K
!,/3 =b(t Ié,_a;; CJ Km)
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¢ 1s the derivative of the normal vector at the point of contact and V¥,
1s the expression for V3 used in the rolling constraint. Vee 1s the relative

velocity at the point of contact,
VIR 4 _n-z
Veel X anpm wmg(’(m*rm)z% wn@('/n"rn)
The matrix equation for the above constraints

1331/{/*'592. éféif’%

Define L to be the number of these constraints. The matrices B,
and B,, then will be L x N and B, will be L x L. (See Figure 4.18.)

It should be noted that for the sliding constraint the entries in
and B3, are not the transposes of the entries in 4,; and 4.3 . For example,
Bj, has an entry A¢. but A4;; must have the entry AA. or the entry Z (unit

matrix)

Flexible Element Constraint

The constraint equation for the flexible element is equation (4.94).

The matrix form of this equation is written as

By v = Vg

Definition of the System Matrix

The system equations, ( 4.128 - 4.133 ) can be written 1in general

matrix form as:

SX = W (4.134)
where S is defined as the system matrix and the components of equation (4.134)
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are defined below.

M o A o Ap o—l- [ X 1 B u‘-\
° P Au A Az Ay w U,
8, Bas 85 © o o ¥ v,
O B, 9 By O O ¢ ) Ve
B, B, O 0 Bzs O % Ve
L O B4 O o 0 o | 7. | Y ]
(4.135)
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SECTINN 5
SOLUTION OF THE SYSTEM EQUATIONS

The system contains 6N+6M+3L equations. The current versicn
1s dimensioned to handle 30 segments plus the vehicle and ground with 21 joints

and 20 other types of constraints yielding 420 equations.

Due to the large system size, sparse matrix techniques are
employed. In addition, since M and Q are diagonal, special subroutines

(DAUX‘J) were written to produce the reduced set of equations involving only

the constraints by block reduction of the system equation (4.135)

» i
Caf + Cpp * Coa g *+Cze T =V,

Gf * Gzt #6359 4G, T= Y,

Cgf + Copt # c”g + Cpq T = V;

"
&

The above equations are solved by subroutine FSMSOL which 1s a routine using
a Gauss elimination process specifically designed for sparse matrices of the
type encountered in the model. The current version of FSMSOL takes advan-
tage of the symmetry when symmetry exists. Although the equations are

written in a symmetrical form, the addition of the sliding constraint and the

tenston e€lements destroy symmetry.

After FSMSOL has computed f,t, q, and = subroutine DAUX com-

putes the linear and angular accelerations from equations (4. 54) and (4. 55)

5.1 SYMMETRY OPTION

If either of the symmetry modes 1s exercised modifications are

made 1n DAUX after the contact routines are executed and before the solving



of the system equations for f4,4 and *. The following tables indicate the
specific symmetrical configurations available by specifying elements of the

NSYM array and the corresponding modifications 1n the DAUX routine.

NSYM(J) = o Normal three dimensional motion for body segment J.
Therefore a complete blank card will enable the pro-
gram to operate in a normal manner.

NSYM(J) = J The motion of body segment J will be restricted to the
x-z plane with no lateral motion. Hence 1t wtll be two
dimenstonal.

NSYM(J) = K Body segments J and K are to remain symmetrical with
no lateral motion. The motion of each will be replaced
with their average and restricted to the x-z plane.
NSYM(K) must be equal to J.

NSYM(T) = -K Body segments J and K are to remain mtrror symmet-
rical with respect to the x-z plane. Equal but opposite
lateral motion 15 permitted. NSYM(K) must be equal to -J.

NSYM(J) f=ULy,U2 and U2 [ f=U1_,Ul and U2
§ X z X Z v
!
= ‘ no change no change
=3 i fJ.=o no change
= K(K>J ‘ = b fo=1/2(f
®>1) | £ N S VI |
- = ; = |
= K(K<J) | fJ—o 1 fJ—fK !
S > ’ = - ' =
K(K>J) f fJ (fJ, K)/2 | fJ (fJ+fK)/2
= -K(KQ) ! fJ=-fK fJ_:fK .
' i

* Reference to the x-z plane are to a plane parallel to the x-z 1nertial plane.
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SECTION 6
COMPUTATION OF JOINT TORQUES

For purposes of computing torques at the joint a separate coordinate
system 1s defined for the joint. The joint coordinate system 1s related to the
principal axes of the segment by the standard yaw, pitch and roll angles as dis-
played in Figure 6.0. Note that the joint coordinates are defined for both seg-
ments that are attached at the joint and joint torques are then computed using
the relative angular orientation and velocity of these two coordinate systems.
These two coordinate systems are fixed in each segment and do not move relative

to the segment.

As an example consider the two coordinate systems presented in F1igure
6.1. The h and h displayed there would correspond to the V and U} axes re-

spectively. The h' and h' axes would correspond to the Ué Ué axes defined for

the adjoining segment.

Joint torques 1n the program are computed by a choice of three rcutines.
Subroutine VISPR 1s described in Section 6.1. It 1s used to compute torques 1in
the standard ball and pin joint. A special model of a mechanical joint termed
an Euler joint 1s described in Section 6.3, Subroutine EJOINT. This 1is based on
the standard Euler angles as displayed in Figure 2.8 using three axes of rotation.
Either VISPR or EJOINT may be used with or without the global graphic join: stop

representation described in Section 6.2.

The ball or pinned joint may lock. The Euler joint may lock on any
combination of 1ts prinicpal axes. If a joint goes from a free to a locked state
or if the Euler Joint changes its state (free or locked axes) a special 1mpulse
subroutine (IMPLS2) 1s called to correct the angular velocities of the segments
so that the required components of relative angular velocity of the adjoiring

segments (those connected by the joint) are set to zero.
The ball joint 1s either free or completely locked. The pinned joint,

of course, can lock on only one axis, in which case 1t 1s completely lockad.

The Euler Joint has seven different locked states and one completely free state.
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The decision to unlock a locked joint 1s made by comparing the
locking torque to an input torque that 1s prescribed by the user. If the
locking torque exceeds the prescribed level, the joint is unlocked. In an

Euler Joint, the user may specify a breaking torque on each of the three axes.

The user specifies a minimum torque and a minimum relative angular
velocity at which the joint may remain unlocked. If the locking torque or the
velocity fall below these specified levels, the joint will relock and the vel-

ocities corrected by use of the impulse routine,.

The spring functions used to define the restoring torque on the ball
pinned, or Euler Joint are defined in Section 6.1. In this definition, a linear
torque vs. angle is prescribed until a specified joint stop angle 1s reached.
For angles greater than the joint stop, a quadratic and cubic restoring torque is
added. This effectively defines the joint stop as a 'soft' stop instead of a
'hard' stop. That is, the angular motion of the joint may actually exceed the
specified stop but a progressively increasing restoring torque will be applied.
When the Globalgraphic option is used, the restoring torque can be defined using

the general function definitions as described in Section 7.5.

The user has the option of specifying that an impulsive torque be
applied when a joint first enters or reenters a stop. In a ball joint, this will
be applied on either the flexure or twist axis. For an Euler Joint, this torque
will be applied on the particular axis involved. If the Globalgraphic option
1s used, an impulse may also be specified on the axis determining the Global-

graphic equation
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Figure 6.0 DEFINITION OF THE JOINT COORDINATE SYSTEM



6.1 SPRING AND VISCOUS TORQUES

Subroutine VISPR computes the torques at the joints as functions of
the relative angular orientation and velocity of the adjoining segments. The
spring and viscous coefficients specified on the input cards are used for the
functional evaluation. The coordinates used for the joint torque computation

are illustrated below.

Figure 6.1 JOINT FLEXURE AND TORSION (TWIST)
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Two orthogonal unit vectors are associated with each segment at each
joint. Let hA and hB be the vectors for segment k(ks=jynt(j)) and h'A and h'B
be the vectors for segment j+1. In the rest position (no torques) hA 1s aligned
with h'A and hB 1s aligned with h'B. The present input routines allow the user
to specify the orientation of these unit vectors with respect to principal co-
ordinate system of the segment. Thus, for each joint the user specifies the
yaw-pitch and roll angles of the axes of the joint as they are located relative
to the prinicpal system of segment k and as they are located relative to the
principal system of segment j+1. If all zero angles are specified for any of
these segments, the hA vector will be parallel to the z axis of the segment anc

the hB vector will be parallel to the y axis.

The flexure angle (@) at the joint 1s computed from the relation:

8 = m-,(AA'A;) (6.1)

The magnitude of the flexure torque 1s computed using the flexure spring co-
efficients. The torque vector 1s parallel to the vector QAQQkNA.

The twist angle (¢$) may be computed from the relation-

— 4 ~ . /
# = ot (hg - hg) (6.2)

where ﬁB 1s the unit vector obtained by rotating hB through the angle &
about the @AQDh'A axis. In relation to Euler angles & 1s nutation and ¢ 1s
precession plus spain.
The rotation operation 1s
hg=(pp-hgt(hg-pp-hg) cos6 + sné6 p ® hg
where u 1s a unit vector 1in the hA®h‘A direction.

The magnitude of the twist torque 1s computed using the torsional

spring characteristics. The torque vector 1s taken along the h'A axis



For a pinned joint, only the flexure torque is computed.

The present routine computes a viscous torque from the magnitude of
the relative angular velocity vector using the flexural viscous characteristics.
The torsional viscous characteristics are not used by the present routine. The

viscous torque opposes the angular relative velocity.

The spring (and stop) torques are computed by subroutine EFUNCT
which uses the following algorithm to compute the torque T from the parameters

and s_, as illustrated in Figure 6.2.

51) 52) 53’ 54) 5)
If o] < sc
T = sllel

If |8l > s¢, an additional torque T_ 1s computed as
) 2 3
T, = sz(|8[-ss) + 53(|9|-55)
If 8<0 (unloading) TS is modified by
TS=54TS

For small values of [é | the routine interpolates between the

loading and unloading characteristics.

The total torque T+Ts 1s returned as the function value.

The coulomb and viscous torque, as illustrated in Figure 6.3, 1is
computed in subroutine VISCOS from the parameters V1’V2'V3 in array VISC .

The algorithm uses the following expressions:

of 18] < Ve 2= v3/(2-|é)/v3), 1 f |8 > Voo 2= |8 (6 3)

=V, VZ/“
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where |wl 1s the magnitude of the angular velocity. Thus V1 1s the linear

viscous coefficient and V2 1s the constant coulomb torque which 1s reduced to
zero quadratically as w - 0. This 1s done for the purpose of avoiding numerical

instability in the integration. These effects need further studv.

2 3

ENERGY
DISSIPATION

TORQUE

$10 +54 (S, (8 55)% +55 (6 51

I
|
: <—— JOINT STOP
|
|

Sg

6 (RADIANS)

Figure 6.2 JOINT SPRING TORQUE



JOINT TORQUE DUE TO RELATIVE ANGULAR VELOCITY AT THE JOINT

'}
V2
COULOMB
TORQUE
>
[w] (RAD/SEC.)
¢ IS THE RELATIVE ANGULAR VELOCITY
V@
VISCOUS
TORQUE
o
|w]| (raD/sEC.)

Figure 6.3 JOINT TORQUE DUE TO RELATIVE ANGULAR VELOCITY AT THE JOINT
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6.2 JOINT STOP MODEL

6.2.1 General Features

Joints always have definite restrictions on orientation which are
imposed by the internal or external geometry of the joint proper. Two types
of restrictions are recognized, The first type, which limits the number of
degrees of freedom in the joint, can be treated by holonomic constraint rela-
tions, which are discussed elsewhere 1in this report. This section 1s concer-
ned with the second type of restriction, which does not limit the number of
degrees of freedom, but which bounds the range(s) of variation of the angle(s)
which express the orientation of the joint. These bounds are usually termed

joint stops (or, on occasion, joint-stop contours when the joint has two or

more degrees of freedom). Since the treatment of such bounds i1n the case of
hinge joints 1s covered elsewhere in this report, this section 1s devoted to
the discussion of such bounds i1n the case of joints with two or three degrees

of freedom.

It 1s clear that in the most general case, the bounds on the variation
of a given orientation angle are functions of both of the remaining orienta-
tion angles. For reasons brought out in the next subsection, 6 2.2, the mode. pre-
sented here 1s limited to joints for which the bounds on a given orientation
angle depend on only one of the remaining orientation angles. As will be
shown, this restriction of the model leads to a particularly simple descrip-

tion of joint stops in terms of the global-graphic representation. The gen-

eralization of the model for more general types of joint stops awaits future

development.

The next subsection also provides the groundwork for the model
formalism which 1s developed in the third and fourth subsections. In the

fifth subsection of this section the stop-torque formalism 1s applied to the
spherical-coordinate representation of the joint-stop contour
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6.2.2 The Global-Graphic Representation

A joint connects two members which are here designated Segment 1 and
Segment 2. The orientation of the joint 1s completely prescribed by the

specification of this orientation of Segment 2 relative to Segment 1. Figure
A A A
6.4 depicts three orthogonal unit vectors, 7,,0,, Oy

in Segment 1, and a unit vector, 7 , which is fixed rigidly in Segment 2.

which are fixed rigidly

STOP CONTOUR @ = 8, (0)

Figure 6.4 JOINT STOP COORDINATES

The orientation of T relative to 1 is completely determined by the spherical-
coordinate angles & and ¢ . More generally, the orientation of T can be

specified by two independent coordinates, w,, &, which are functions of & and

@ .

If the joint has two degrees of freedom its orientation 1s completely
determined by the orientation of T ; further, any bounds on the orientation of
T are functions only of U, and U, . In this case, the bounds on the orien-
tation of T can be represented by a single closed contour on the surface of a
unit sphere which is centered at the joint. This representation of the joint

stops 1s termed the global-graphic representation.
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If the joint has three degrees of freedom, 1ts orientation 1s not
solely determined by the orientation of f_, but requires additionally the
specification of the relative orientation of a second unit vector, 3 , which
15 fixed rigidly in body 2 and which 1s noncolinear with T . Further, the
complete specification of the relative orientations of T and S , depends upon
three coordinates %, 4. As before, the orientation of T 1s still a function
only of &, and u, . However, (depending on the joint geometry), bounds or

stops on the orientation of T can be functions of all three coordinates Uy Uy

7 In this case the global graphic representation of the stops on T would
consist of a family of closed contours on the unit sphere, with Uy as the para-
meter of the family. A similar representation could be introduced for stops

on the orientation of § .

As 1ndicated in the first subsection, the joint stop model considered
here 1s limited to joints for which the bounds on the orientation of T are
functions only of &, and &, . Also the model does not contain provisions for
including those bounds on the orientation of S which are distinct from bounds

on the orientation ofr .

~
In applying the model, 1t 1s important that the coordinate system J,
32 &3 and the unit vector T are chosen so that the reference orientation (see
Figure 6.1) 1s within the joint-stop contour. Also, 1t 1s necessary that when

contour 1s expressed in the form

c6=0, () 6.1

8,(®)1s a single-valued function of @ . Fortunately this condition 1s satis-
fied by the joints of interest. The version of the model which 1s presently
programmed (and which 1s discussed in the subsection 6 2 5)employs the repre-
sentation in (6.1) for the joint-stop contour. However, the more general
model developed in the fourth subsection 1s not limited to the representation
in {6 1) It 1s based on the employment of any coordinates i ,,U¥, which are

adequate for the specification of the orientation of r. For example, 1f the
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Vi
stop contour bounded 6 in the range 0< <3, one could employ
U= T.

d\>

[£DY

Ug =T - €,

33, and ¥, would be identified

— A
, and with r,e, for other ranges

Or, more generally, U, could be equated to T -
with ?)gz for some ranges of orientation of T
of orientation of T. This particular choice of coordinates would lead to a
more complicated representation of joint-stop contour than the employment of
the coordinates @ and #. However, the evaluation of arctangents would be

avoided, and so computer running time might be reduced.

Throughout the development, the equation

Flug,u,)=0
(6.2)

is employed for the joint-stop contour. This contour represents a hard stop.
As 1n the case of the hinge joint, the hard stop is replaced by a soft stop.
That is, no stop torque 1s applied to the joint when the terminal point of T
1s contained within the joint-stop contour in (6.2). But when the terminal
point of T 1s outside the joint-stop contour in (6.2) a stop torque is applied
to the joint. This torque acts in such a direction to tend to restore the
terminal point of T to the region inside the joint-stop contour; and the mag-
nitude of the torque increases with the extent of penetration of the terminal
point of T into the region outside the joint-stop contour. The general
approach which 1s taken to obtain a stop torque with the desired characteris-
tics is brought out in the remainder of this subsection. The detailed develop-

ment is given in the following subsections,

The stop torque, ﬁ, can be expressed as the sum of stop torques in
the direction of and perpendicular to the unit vector ¥ . It 1s clear that a
stop torque in the direction T tends only to produce rotations of about the T
axis. Such rotations could not restore the terminal point of T to the region
inside the joint-stop contour hence 1s not applied. It 1s clear, therefore,
that M should be perpendicular to ¥ . This perpendicularity 1s assumed by the

relation:
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- - —
=T ®F
M (6.3)
It 1s convenient to visualize F as a force applied at the terminal point of r .
In actuality, of course, the desired restoring action 1s obtained by applying

the torque-ﬁ‘to Segment 2 and a torque ™ to Segment 1.

The force F which 1s required to obtain restoring action 1S not unique.
First, 1t 1s apparent from (3) that components of F which are parallel to T
do not contribute to M. Therefore,-? will be chosen perpendicular to T . In

the case of a hard stop,'?*could (conceptually, at least) have components

parallel to the joint-stop contour. On the basis of symmetry arguments, such
components would not in general serve a useful function. Therefore, F would
be chosen 1n a direction perpendicular to the joint-stop contour. In the
generalization to a soft stop, it 1s logical to choose F 1n a direction which
1s close to perpendicular to that portion of the joint-stop contour which 1s
nearest to the terminal point of * . In accord with the desired character-
1stics of the torque,'ﬁt the magnitude of the force, Ei should increase with
the extent of penetration of the terminal point of T 1into the region outside
of the joint-stop contour. The joint-stop model has been designed so that
the force f: displays the characteristics just discussed. The model 1s de-

scribed i1n the following.
The function f/&l,uz/ls defined so that

(1) f(u;,%;/=0 on the joint-stop contour
(11) The contour f(az,zzz)-c encloses or 1s enclosed by the
contour Ff(u,,u,)-0. (That 1s, these contours do not
intersect)
(111) On the contour F(u;,%2/=6 1s a single valued function of ¢ .
(1v) The surface gradient of f{&l)uk) 1s 1n the direction of the

external normal to the contour.
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Figure 6.5 depicts the geometry for the determination of the force F.

This figure shows polar ( ©rs¢ ) plots of the contours of interest.

Figure 6.5 JOINT STOP CONTOURS

/ . - = s
U, ,u/ denote the coordinates of T, The force F is obtained from a differ-

ential approximation to the construction described in the next paragraph.

. / /
Through the point (%,,%¥, ) the contour

f(uuuz}=f/uzl:a2l) (6.4)

can be constructed. Then a geodesic of the sphere (depicted by a broken line

in the figure) can be constructed to pass through the point ( zz;,a,_’) and to
be perpendicular to the contour in (6.4) at the point. The geodesic will inter-
sect the joint-stop contour ( f(u,,%,/-0 ) at some point (u,’, u; ). The

force F is parallel to the geodesic tangent at the point (z, »%j )(and in the
opposite direction to the external normal to the contour in (6.4) at the point

—
(4%, uz )). The magnitude of the force F is an increasing function of the

magnitude of the vector AT given by

A'r':'r"[uz',u.zlj- F’ﬂt;:uzo) (6.5)

1473



In the model, the force F 1s obtained exactly as just described with
the exception that [, -«°)and u, - u; are treated as differentials, and AT

and F/u,, uz/.f(u;) w,° ) are evaluated in the differential approximation.
As a preliminary to the mathematical development of the model, an
expression will be derived for the surface gradient in terms of the general

coordinates ¥;, ¥,.

6 2 3 The Surface Gradient

The surface gradient 1s just the operator —EZ@(57'®V/ where Vv denotes
the usual three-dimensional gradient operator, and @ 1s the normal to the sur-
face of interest. In the current application? 1s equated toT . It 1s con-
venient to employ the modified surface-gradient operator given by

v :-Tre(tev)
(6.6)

where T denotes the radius of the spherical surface. In the case of the unit
-
sphere , r = 1. Thus, for simplicity, in the rest of this section Vsf will

be termed the surface gradient of £ .

The fundamental property of the surface gradient which 1s utilized 1in

the model 1s that the vector given by
Vs f [uz » uz)

7 /
Uy =Uy Uy~ U,y
1s normal to T and to the contour

Fluous)=f(u) 4/
(6.7)

at the point w, 74, &,= uy . As stated 1in the previous subsection, f{u; 7y,

must be chosen so that V;* evaluated at (%, , %z ) 1s in the direction of the

exterior normal to the contour in (6.7).
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The surface gradient of any differentiable function V of u, and u,

satisfies
dV—'d;‘VSV (6.8)

where dv is the total differential of ¥ anddT is the total differential of T
Its total differential may be

dtis expressible as a function of w, and %, .

expressed
dr =<—i:Q/u1f32duz (6.9)

i

where
—_‘-a L:I,Z.
(6.10)

a =
Lt Ju.

o~

, are not in general orthogonal. Thus, in accord with

The unitary vectors, e,
the formalism for nonorthogonal curvilinear coordinates, reciprocal unitary

vectors dj6@=1,2) are introduced. These vectors are coplanar to the vectors

E:[L' =1,2) and they satisfy
(6.11)

wherecQ} denotes the Kronecker delta.

From (6.8),(6.9), and (6.11), it is readily concluded that
1 -
-G l¥ LR2IL 6.12

Equation (6.12) is the general expression for the surface gradient of a function

V of w, and u, .
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6 2 4 The Mathematical Formulation

This subsection 1s devoted to the mathematical development of the
stop-torque model described in the second subsection. As before, ull,zéz'
denote the coordinates of T , and w«/,u; , denote the coordinates of the
intersection of the joint-stop contour with the geodesic depicted in Figure
(6.3). From (6.5).

AT = F (), uy)- T (e, uz) (6.13)

As explained 1n suvsection 6.2 2, AT 1s evaluated in the differential

approximation. From (6.9) and (6.13)

- — —_
Ar = dzAuifdz‘Auz

(6.14)
where
AZLL = u(_l— u:_
(6.15)
—_ / 7
and & 1s evaluated at (u,, %, ).
Since (wj,«; ) lies on the joint-stop contour,
Flus Uz°) =0
or, employing (6.15)
Flu,-duy, uj—Aug)=0 (6.1€)
In the differential approximation, (6.16) becomes
dfu uy/ Gl u] ) .
P AUIf J&Zz' AZLZ= f[aj;ug/ (6.17]
94

The exterior normal at the point ( uj, u, ) of the contour

Flugruy) =Fle), ul/
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is in the direction of the surface gradient st(ul'; Uz,'} . From (6.12)

e 2/
Vo Flu, u)= e’a,“ iza’Z’ (6.18)

-— 7 ’
Where &’ is evaluated at (U, U,y ).

Now, AT is the chord of the geodesic depicted in Figure 6.5. There-
fore, in the differential approximation,AT is directed parallel to the sur-
face gradient in (6.18). This condition and (6.17) uniquely determinesAu1
and Au,. To evaluate Au,and Au,, (6.11) 1s employed to reexpress (6.14)

in this form (dot 3, and 3, with 6.14 to get coefficients of iand 3% )

1 2

— — — — _A.l
AT =[dl'dlduzfd Auz]

(6.19)

# &21'3}4%*3’;'&:4% ]722

In the expressions for the final solution, the superscript 1 on uj . u}

—

1s dropped so that u,,u,are the coordinates of T . The stop torque, M,

defined in the second subsection, 1s given by

M=0 1f (%;,%) is within the joint-stop contour (6.20)

r @A otherwise

= -A(/Ar/)

A (/A?/) denotes a suitably chosen non-negative, increasing function of the

magnitude /A T/ of AT, which 1s given by

— — —_— A
AT = dIAClI’Ld'Z a2

(6.21)
The unitary vectors 3.1 are defined i1n the previous subsection, and
Lo ly 2y, B -
dug (e f]f‘ = p [20fs- 2 i] 7 (6.22)
L2l 2"'12, 2, J U, = 2 2
,- dzzé'z‘izzfzé*dufz]

147



= rflu,,u,)

/o= 3/’/0,% (=1,2
¢, - 32, L,)=1,2

The conditions on the function f/zzl,uz) are given in the second subsection

of this development.

In the next subsection, M 1s evaluated for the coordinates o and o .

6 2 5 Application to Spherical Coordinates

In the computer program, the spherical coordinate representation
6=6,(¢)
1s employed for the joint-stop contour. To evaluate the stop torque, ﬁ, in
the coordinates ©,® the formalism of the above subsection is applied with
U,=6 , Uy=@

R

pA

—_— A — 4
2,=6 , a,=Psine

f/a1>u2,): 9—6°/¢}
A
Here & denotes a unit vector in the direction of increasing & and ¢ denotes a

unit vector in the direction of 1increasing ¢ .

- N
The evaluation of M 1s straightforward. The final expression 1is:

for o< eg/p) M= -A(/ATF))(F 5o+ a.)
and for 9 > 6, (¢), W’O v sa 6"; eo’;
where - a6, /p/
o = 7L
o d¢

[ 8%/ o-5f0]sen 6/ Vstn% # (6. )?

The non-negative function 4//13'1"/]15 computed by employing the force versus
deflection subroutine in the computer program. As noted above, the torque

—

M 1s applied to body 2 and a torque M 1s applied to body 1I.
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6.2.6 StoB Contour

The representation of the stop contour is taken from the work of Dr.

*
R.E. Herron where he uses a trigonometric polynomial of the form.
Va4
8,9/ = Zl cos 7 4(Cpypy* Copp 57 Y
7=

The degree of & depends on the particular joint. Stop contours and
the corresponding numerical values for the coefficients as supplied by the
Biostereometrics Laboratory of the Texas Institute for Rehabilitation and

Research are presented in Figures 6-6 thru 6-14,

See equation 11 pg 40 of Reference 14,
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6.3 EULER JOINT MODEL

As a means of more accurately modeling mechanical joints used in

dummies, a joint termed an Euler joint
defined.
segments 1 and 4.

illustrated in Figure 615 has been

For purposes of discussion consider a composite joint attaching

hy
o \
r f21 r
1 22 r22 as
33
X3 X3

Figure 6.15 EULER JOINT

The composite joint itself is
and 3, and 3 pin joints.

Joint 1 connects 1 to 2,
Joint 2 connects 2 to 3,

Joint 3 connects 3 to 4,

comprised of two segments; segments 2

‘

rotation about A&
rotation about Ak

rotation about A,



The equations of motion are:

XAy Uy

7?72X2-f1 "é Uy

7775 X;‘fz/"/g = lys

27 X 'é T Uy

‘%/,ﬁz w;/* l”um_sz; "ﬁztz :uuf_eZ‘I

,;%(Yja wi/' Tt 9Dt T, D, 1= Dot + Dy Uy D, Ty D T,
34,‘(9335”}/“"32‘923 Ie#T53@Dy 15 - Dyl p # D3y Ups-D5 L7 T4
ﬁ(@t iy )~ Cgs® Lyl ~Lply = Usy-Le T

with the constraint equations:

-z, -z
Xy 2, Tye = Xo# D, Taz
-1, -z
Xo# Dy Ny, = Xyr Dy 1y,
2,7, - <
Ky 7Ly Ty Xyr Dy Tys

and angular constraints:

2, %11 :ﬁz_ Azz =)y
ﬁz_jbzz = ﬂa_z /732 = /72,

2 /733 =2 %13 = /s
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Where /,,4,,/,; are pin vectors parallel to permitted axis of rotation.
The f,,/,,/;  are constraint forces, and ¢, ¢, and Z3 are constraint torques

at the joints. Also ?,,%; and 7; are additional torques generated at the
joints (th 18 pin vector hJ as measured 1n system n.)

Define an axis system in segment 1 where the % axas 1s aligned with the
pin vector # . Let 4, be the relative direction cosine matrix associated with
this system such that a vector 2 in the reference system will be transformed
into the local system by;,cul = 41Dy Jrer - Define a reference system in
segment 2 whose 2 axis 1s aligned with the pin vector 4, and whose x axis is
aligned with pin vector /ﬁz . Also define a system 1in segment 3 whose; axis
1s aligned with the pin vector éz and whose x axis 1s aligned with pin vector
hS' (Note that hl-hs = cos 6, hl‘h2 = 0 and h2‘h3 = 0) Define an axis
system in segment 4 whose 2 axis is aligned with the pin/; . Let# be the
relative direction cosine matrix in a manner similar to that used for segment 1.
Let ¢ be the rotation of segment 2 relative to segment 1 about the /4, axis.
Let & be the rotation of segment 3 relative to segment 2 about the 4, axis.
Let »» be the rotation of segment 4 relative to segment 3 about the /43 axas.
Then

Dy=73(¢) /% D,

Dy=7x(6)D,

L=t R (w) 2, < 4,7 T3 (Y] Tx(8) 73 (9) /42,
#(v) 7 (8)p(d) = rg 0,0,

here Tx(e) indicates a rotation through an angle 8 about the local x axis
and Tz(cb) indicates a rotation through an angle ¢ about the local z axis
Also note that 73 (¥/ 7% (’9/7}1(/¢/ 1s the standard Euler transformation relating
segment 4 to segment 1. Where ¢ is precession © 1s nutation and ¥ is spin.

Make the following simplifications:
{1) The masses and inertias of segments 2 and 3 are negligible
M =Py = P30
{2) The dimensions of the joints are negligible
=T,

Taos 27 T32% 0330
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(3) No forces or torques act on segments 2 and 3 other than those
produced by constraint forces and torques, or torques generated

by the relative Euler angles at the joints themselves.
(322 323 8)
12 13

These assumptions reduce the model to two effective segments (1 and 4) con-
nected by a massless joint.

[
[}

The reduced set of equations are:

T Xt Ty = Uy jﬁ/k&&a;//fl}zébjglf r ly Uyt D T
~furfy= 0 B e AT X e XD
[y rly =0 "L, r bty DT s BT,
g Xg~ly = Uy, F( 2y ) Tgs® Dl - Dpty =2ty ~ Ly T
Since
Lottt

tzzt}_-T2+T2
and
ty3 =ty - Ty + Ty

If we let t = t, - Ty

We may write the equations as

ﬁWIXQ;+/i= Uyy
Ny Xg=ly = Uy
/»@1'“17/"1”11@&1/; # D= Uy
(B ) -7450Dp f- Lal =gy
- -
Xz ffpz Te= Xy + 2 zr43
For the axes of rotation we have:
for precession 2 K
P I ) 1/;1, N
nutation 6 » N2, bzzzﬂ_?zﬁu)
P4 4
¥, ﬁj :_,03 /)33"'121 b43

spin
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For the direction cosines,

Where 4, and 4, are defined such that when @#-6=p~0, the local x, y, 2z

axis of each system are aligned.

Thus
/7z:= Coo/ ‘/Zz =A:3 =/}¢;

Doz '/001 / s 63,_
Explicitly for the 4, in the inertial reference system we have
h=0"1 )
b= 27 K0 (3)- 27H (5 8)
hos D B8] 204 (S
e 574, 7F)

The relative angular velocity is

or equivalently

dur- D uy- Oy,
¢'fCO$951}= N dw
e =/, - dw

cos e grgr=ry dew

Thus we have

It should be noted that a singular case arises when cos6:=27. For these
cases 1t 1s impossible to distinguish between ¢ and ¥ from the rotation

matrix ( 7p(@)7 (4)7#(¢)) alone, some auxiliary information must be used.

Consider the case where all axes are free -
then
£ = cz/z.fziézfaﬁég
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where
X = -//ﬁ)p/

L= -9(e8)
Y- -4(v.¥)

Where f, g, h are the torques generated on the free axes

Note that
4, -7, Sor ( 1,2, 3
4, ﬁz ﬁ 0
by hy = Cos @

It should also be noted that when sin 6:0 the components of
angular velocity of segments 1 and 4 projected on the / @/ﬂbax1s must be

This 1s a constraint in the system

equal.

Consider the case where the precession axis 1S locked. The constraint
torque t must lie on an axis which 1s perpendicular to h; and hy This axis 1s

c
* *
h; = h; x hy, hy will be a unit vector since h; - hy = 0
= - B, f;*/7 = =l Gha=rrto
where *
tC = 'C!hl = hl tchl

The constraint equation 1s a statement of the fact that the components
axis of the adjoining segments must be equal.

of angular velocity on the /4,

That 1s,
* _ -
A&'[Z&1a4'35&1103}= °

When the system 1s constrained we will write the equations of motion as
- (&jzabf/)*lkzﬁ722’§ *'Ziptéz Upy * 4, (¢ # Ze )

Rz

(I - hl hl )

r¢3®,p¢/§ ‘-94 Ptc: Uy -2y (/t"tc)

with the constraint tC = (I-P) tC =0
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Where P is a projection operator with the property ~Z.=?¢

The constralnt equation in acceleration form may be expressed as
-7 . -z . * - - *
PB w;—ﬂ,’w,,]f/l[]—/v]z‘c = -/ [ﬁ,’a@—ﬂf'@] A,

Where
T

* * * *
P = hl hl = hl hl .

4, has the angular velocity of segment 1 and #; has the angular velo-

city of segment 4.

Similarly if the spin axis is locked we have

&= ~C~Fhy- 95,
where
* =T
fc=db3* anrd P=h3z hj3
*
and hy = h; x hy
The rest of the development is the same. (4, has angular velocity of

segment 1 and ZQL has the angular velocity of segment 4.)

If the nutation axis is locked, then we find that

=T 4:'f[5"ﬁAG
* *
where berahy, @and P = h, hy T
*
hy = hp

When any two of the axes are locked the unlocked axes 1s treated in
a manner identical to that of a pin or hinge joint. The constraint torque
must be perpendicular to the axes
H ta=0

v

and the constraint equation is derived from
4 -2
40(0 wy- By )= o
= I-hh, 7=
P Z"Z J 4}‘9 (Z;¢z

In this case
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locked pair pin axis projection P
g, e Ay I-h3hsT
g, ¥ A I-tp 5,7
e, ¥ 4y -H 57

When all axes are locked the constraint equation 1s

- 4
Diw, -Diw, -0

and P = I, the identity matrix.
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Table 6.1
SUMMARY OF EULER JOINT RELATIONSHIPS

IND | LOCK P TORQUE CONSTRAINT €Q P( w;-1), %)=
1] o hhT t-gh-hhy hy By ow
2 | o bt t-fhy-hh, hy by bw
3 v 7, /’3r be-Fhy-gh, h3*}'13wa
4 loy Lh k7 3 -hy hy dw
5 | Py Fah" le-97 -hy hyw
6 |[pe I-t4h" t.-hh, -h3hs-Aw
7 |gey Vs e 0
8 |zone none ~Fhy-9h,-hh, Rone
Aw = Da'lwz - Dl‘lw1

. -2 2/ Ly f -2 -1/
Fr8,8) h=27H2E)  h=D K L@ (3), b - BHE)
g=9(e,6/ . . T 1
h=h(y¥) /71‘/41”5)601 ’/72=['Dz-1""z/®/71*¢ hy s hy = (D" W4)®h3

*

* *
hl =h2Xh3, h2 =h2, h3 =h1 th_

F(v) 75 () T (0) - 4,0, 571"

@;‘I(ﬂ.CO,SG —'4'(&’)’ -¢ si1n 6 = hl* T AW
6 _—/Z2 (aw)
@ cose £ ;1/ =@'(AW), -y sm6=h-<,‘r © Aw

Each of the functions f, g, h is defined as the sum of a spring torque,
a viscous and a coulomb torque as defined in Section 6.1 and 1llustrated in

Figures 6.2 and 6.3.
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SECTION 7
FORCES PRODUCED BY CONTACT

The present version of the program has four basic contact routines

(1) ellipsoid with plane

(2) ellipsoid with ellipsoid

(3) ellipsoid with restraint belt
(4) ellipsoid with air bag

Each segment has an ellipsoidal contact surface defined for 1t.
Additional ellipsoidal and/or planar surfaces (finite rectangles) may be
associated with each segment  The vehicle may have planar or ellipsoidal
surfaces. Any combination may be used with contact routines 1 and 2  The
restraint belt may be attached to any segment (usually the vehicle) at two
anchor points (these must be separate) and 1s assumed to pass around the
principal ellipsoid through a specified point associated with the segment
Belts mav be associated with any segment, but 1t 1s assumed that the belts 1lie
in a plane determined by the anchor points and the specified point in the

ellipsoid The number of belts (8 maximum) 1s limited only by storage.

In each of the first three tvpes of contact, the force 1s determined
by a force deflection routine which allows for energy losses (hysteresis),
permanent offset, and impulsive forces The force deflection 1s associated with
each paired contact, hence 1t 1s important to specifv a mutual force deflection
characteristic which allows for the specific paired contacts being considered.
For example a head ellipsoid contacting a planar dashboard should be assigned
a different force defelction response than the upper torso (ellipsoid) contacting
the same planar dashboard. Proper definition of the mutual force deflection
allows the user to partially account for the deformation of the contacting

segments.

It should be noted that the contact routines which are inputted
force-deflection characteristics compute the force as a function of onlv one

parameter (related to the penetration distance) and applv the force at a single
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point. However, the modular structure of the program permits easy insertion of
more sophisticated routines in which, for example, the force might also be

made a function of penetration rate and/or the contact area.

The air bag routine 1s special in that the air bag 1s assumed to be
ellipsoidal and contacted only by surfaces {occupant segments or vehicle
reaction panels) that also are ellipsoids. No contact forces are computed until
the air bag is fully inflated and the motion of the bag is then dynamically
integrated. Although several segments may contact the air bag, no provision 1s
made for the interaction of simultaneous contacts, i.e., the volume and the
effective area associated with a segment (or reaction panel) contact with the
bag are computed separately for each contact.* The bag pressure 1s determined
from the total change of bag volume, which is the sum of the volumes computed
for the separate contacts, and the forces on the bag and the contacting elements
are computed using the pressure and the effective contact areas. The computer

program currently provides storage for a maximum of five air bags.

A separate subroutine is used to compute the force resulting from
a specific type of contact. The general pattern for defining the forces and

torques produced by contact is the following:

1. Detect contact.

2. Determine the parameter (penetration) for use in the force deflection
routine.

Compute a normal force and friction force.
Apply the total force and torque on one segment.

Apply the corresponding reaction force and torque to the other
segment.

The following sections develop the method used in each of the four

types of contact.

*It should be noted that simultaneous bag contacts, 1f too closely spaced, can
result in errors due to overlapping of volumes and areas which 1s not accounted
for 1n the computations.
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7.1 PLANE - ELLIPSOID CONTACT (SUBROUTINE PLELP)

The geometrical configuration of the plane ellipsoid contact
along with the appropriate variable definitions 18 presented 1n Figure (7.1).

The following equations refer to an ellipsoid Am attached to segment m con-

tacting a plane P, attached to segment n.

At the point of maximum penetration

/‘LAn,rmz O Dndz‘zz kS (7.1)

A - 18 a scalar quantity
¢+ - 18 the outward normal to the plane in m's reference system.
tf 1s the outward normal to the plane in n's reference system.

The ellipsoid equation 1s written in the form

-
therefore Tm Am T =1
/(/2= Z fAm‘IZ(
or
u=\tTAL

This results 1n

-1
= - < -
The penetration distance P 1s given by the following equation
7
Pt L le tm T 6T (Kapdmfeg )

where /nﬂ 1s the distance of the plane from X (see Figure 7.1)

For P < © no penetration has occurred, and \f p > 24,
the ellipsoid has fully penetrated. In both of these cases no contact 1s assumed
and therefore no forces are generated., The assumption of no contact for fill
penetration 1s a crude method of preventing an erroneous contact when an

object comes behind a plane from the side.
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The point of force application can be specified as occurring
at any point between the point ¢f maximum penetration to the point of inter-
section of the vector r | with the plane. This point 18 the center of the ellipse

formed by the plane-ellipsoid wntersection. X

Then

Y= (1~ P)Tm, "f/%ﬁ/rm # A (7.3)

defines the point of application of the force as measured from the c.g. of

the segment m., Then

= O, Dt Ym + Dp{(Am - %
Yn n Pm Ym n\/Am n) (7. 4)

is the same point as measured from the c, g of segment n.

If the plane H' is bounded (i.e a finite rectangle) the pro-

jection of Yy, o the plane is checked to see if it lies on the rectangle by

comparing
and -
o=r, Y-y =0,
< +7 =
O—t.s Yn 0('35'/‘93 (7.5)
tl’ tz, t3 are vectors defining the plane, t, is the outward normal
to the plane. The scalar quantities &,,3.,8;5, «,, oty define the

location and size of the plane,
If /52_ or/é’a is zero or negative this check will not be made.

The magnitude of the normal force 18 computed by the force
deflection routine using the penetration distance and the specific material
properties. The normal force is then used to generate a friction force ex-
tsting between the two contacting surfaces. Information concerning the rela-
tive velocity 1s important here, therefore the following equations are

needed. The relative velocity between the surfaces at the point of contact 1s

* 1f the plane 1s soft and the ellipsoid 1s hard, a value of £ =0 seems appro-
priate. If the plane 1s hard and the ellipsoid 1s soft, a value of .'=1 seems
appropraiate.
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Figure 7.1 PLANE-ELLIPSOID CONTACT
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computed in m's reference as
Vo= Doy (X~ Xy ) # Wy ® 1y — Doy DY@ 4, ) (7. 6)

The magnitude of the normal component 18 given by '(.‘TV.. .

The tangential component then 18
- r
V,.t— K,—(Z‘ Vz.,jt (7.7)

The friction force is computed as Cf (coefficient of friction)
times the normal force. If the magnitude of the tangential velocity is less
than one unit a ramp function is applied which allows the friction force to
decrease to zero as the tangential velocity decreases to zero.

The total force 18 then computed as

f=‘ ﬂ)orlr—cf ’ fr;arl V’*/]Vul (7.8)
The force -f 1s applied to segment n and { is applied to seg-

ment m. The torque - ® 7/ is applied to segment n and ®F to seg-
Yn ym g

ment m,

7.2 INTERSECTION OF ELLIPSOIDS (SUBROUTINE INTERS)

In the program 1t 18 necessary to recognize the intersection
of two ellipsoids A and B. For the ellipsoid-ellipsoid contact routine
(Subroutine SEGSEG) both the exterior and interior contact (ellipsoid A 1s
interior to ellipsoid B) are considered as indicated in Figure 7,2, For the
airbag routine only the exterior contact 18 considered. The technique used

1s based on the following algorithm.
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EXTERIOR CONTACT INTERIOR CONTACT

Figure 7.2 ELLIPSOID-ELLIPSOID CONTACT
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7.2.1 Ellipsoid-Ellipsoid Algorithm

If an exterior contact 1s specified the ellipsoids A and B are
expanded or contracted about their centers until a single point of contact 1s
achieved. If contraction was necessary to establish this single point of
contact the ellipsoids are said to intersect, otherwise no intersection s

assumed.

If an internal contact 18 specified, ellipsoid A 18 contracted
and ellipsoid B 1s expanded or vice versa until a single point of contact 1s
achieved. If a contraction of ellipsoid A (expansion of B) was necessary to
achieve this single point of contact an intersection 18 assumed, otherwise no

intersection is assumed,

This algorithm is executed by subroutine INTERS. The equa-
tions are described below. In the current version of the program a memory

knowledge 18 used, hence the algorithm may fail for large penetrations. This
1s provided which uses the last solution as the starting point for a new

solution. Use of this prior knowledge should reduce the number of iterations

which are done to obtain a solution.

Consider the case illustrated in Figure 7,3 of two ellipsoids

A and B which just touch at a single point,

A />

Figure 7.3 ELLIPSOID-ELLIPSOID CONTACT GEOMETRY



The basic geometrical relationships are then
PuAx = -n
uB(x-m)=n

where n 18 the normal directed outward from ellipsoid B and

\f,/u are scalars.

For an exterior contact 2/, &4 are both positive and for an

interior contact (A 1s interior to B) V, «« are both negative. Hence in either

case

which yields V/4X=—£(X—772)
(VA+B)x=Bm
(x=m )= -V/vA4 +B) " Am

Thus the value of the single point of contact X 1s determinec

by the parameter VvV .,

The basic equations of the ellipsoids are

X Ax =1
Let (x-m ) B(x-m)=1
Fp(v)=x Ax
and £y ()= (x-m) B(x-m)

For a particular X

f }‘:4 ﬁ// >1 ellipsoid A has been expanded, 1,e x lies outside of the ellissoid

1f fﬁﬂ// <1 ellipsoid A has been contracted, i.e x 15 inside the ellipsoil



Now define the function g(v) such that

gw) = f,(v)- 14 (v) for exterior contact
and/or
glv) = &L(V)—ig(l)) for interior contact

The single point of contact 1s then determined as the value of

where g(p) = 0.

Investigation of the equations shows that solving for the v
where g(¥) = 0 1s equivalent to solving a sixth degree polynomial in » .,
Rather than solve the polynomial a Newton-Raphson procedure is used where

g(v) 18 expanded in a Tayler series.

gvrdy) =g/ rdv dg
oLy | ¥
Since it is desired that g(pfc/'V/-‘ O then

-g)
J}): .._5:_.
(),

This procedure is iterated until a specific degree of conver-
gence is achieved ( ld?;l" < & ) or until a specified number of steps have
been executed and convergence has failed in which case an error message 1s

printed.

The nitial value of ¥ 18 estimated as

v-(m- ﬁm/m-ﬂf??/l/z

for the exterior contact and the negative of this for interior contact. This

produces a v of about the right order of magnitude.
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Using the expressions for fA and fB,the following equations

result
% dx
—= = 2 .
ay ay A%
d/s d7a
—_— =D —_—
dv avy
ax

-— = - 24
e WA+ B~ Ax,

for exterior contact, cE/Z=Q/__’£" —dfd=/1*p/ f'/ﬁ.
dv dv d¥ av

and for winterior contact, d—y___ L Q/}; dfﬁ-(‘p - _{ /df:'
dy £ dv dp froav

1
The functions fA’ fB and-f— are illustrated below as functions of VvV,
A

DESIRED SOLUTION
£y = fs

¥

DESIRED SOLUTION
L =
778

v <0 Y >o
INTERIOR CONTACT EXTERIOR CONTACT

Figure 7.4 ELLIPSOID FUNCTIONS FOR INTERIOR AND EXTERIOR CONTACTS
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When the solution 18 obtained, the expansion factor 18

E;\I Fa

If no solution ig obtained after 50 iterations, the staterment
YINTERS ITERATION DID NOT CONVERGE' 18 printed and the program

continues,

7.2.2 Depth of Penetration for Ellipsoid-Ellipsoid Contacts

The depth of penetration for the ellipsoid-ellipsoid contact 18
computed by subroutine SEGSEG by the following algorithm, using the results
of subroutine INTERS.

1. For an exterior contact where the ellipsoids have been

contracted by an amounté; as determined by subroutine INTERS

they have a single point of contact at the point x when contracted.
The location of the same point on A when not contracted 1s

Xp = X,
and on B 1s
Xa=( X-m)sp +72
s / )/ff
The vector between these points is then
=(L _

The depth of penetration, p, is taken as the magnitude of this

vector i. e.

P =le=|7|
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2. For an internal contact,A has been contracted and B

expanded. Hence,

Ag = N

X5= 6/://\"777)?777

Then
XoXo=X, € (X-m1) ~m-[§—j ~€, )X~ (2-€, ) m

The depth of penetration 1s then taken as

Py xgH(i—d X*E (x-m2)

7.3 RESTRAINT BELT CONTACT

The CVS IV program provides two options for modeling of belt restraint
systems® (1) the original method, which 1s described in detail below and (2)
a new approach developed for the Air Force Aerospace Medical Research Laboratory
at Wright-Patterson Air Force Base which allows modelinp of interactive belts

that can slip over multiple deformable segments (References 5 and 6)

In the simpler treatment, each restraint belt 1s assumed to lie 1n
a plane defined bv two anchor points attached to a segment (usually the vehicle)
and by a fixed point on a contact ellipsoid rigidly attached to some other
segment (see Figure 7 §5) The calculation of the belt length from the fixed
point to the two anchor points is done separately The friction of the contact
between the belt and the segment ellipsoid may be assumed to be either zero or
irfinite. In the zero friction option the total belt length 1s used to compute
the strain and a single force-strain history 1s used to determine the force
which 1s applied equally at each of the tangent points In the infinite
friction option each of the partial belt lengths (one from the fixed point to

anchor point A and the other from the fixed point to anchor point B} are treated
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Figure 7.5 RESTRAINT BELT GEOMETRY
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Separate force-straint histories are carried for each part

independently
It 1s assumed that the force-strain functions

resulting in different forces.
are defined i1n such a manner as to account for deformation of the contact

ellipsoid (1 e , they are mutual force-strain functions).

The center of the ellipsoid 1s used as a reference for the calculation

of the tangent points and the belt length.

The following vectors are defined:

#4,7s - location of anchor points w.r.t. the ellipsoid

- vectors from the anchor points to fixed point

75/

/. - vector defining the belt plane

¢
All quantities such as these are matrices 1in the reference system of the segment

associated with the contact ellipsoad.
® 7,
@ 74 (7.9)

The distance, 4 , of the center of the ellipsoid to the belt plane
P

is computed by

(7.10)

An ellipse 1s formed by the intersection of the belt plane with

the ellipsoid. The center of the ellipse 18 given by:

N
Xe TET Ve (7.11)

E 1s the ellipsoid matrix.



7.3.1 talculation of the Tangent Points

The belt plane is illustrated in Figure 7.6.

Let praxrBpr7t®Llp

Since x, z, and p terminate i1n the belt plane, the following re-

lationships hold, ¢:p=¢-x=t.p

Then
CpRE ROl p yields
rF=1
(7.12)
p may now be written;
p=z*/d/;”’t/"'7f@f; (7.13)

Since z-p 18 tangent to the ellipsoid 1t must be perpendicular to the normal

at p. Applying this yields,

(3-P)Ep=0
and since p lies 1n the ellipsoid the ellipsoid equation states that PEp =ZX.
Therefore
pLlp=1
yielding j.“;.[z ,c./d;_[;,

(7.14)

Equations (7.12) and (7.14) may be used to defineeor andF . To determine 7~
use; I-= )0 ff'

]=C(2'x-f2’_f2q/51-f} deTX-f(I.‘OLj?—)
#O% - LpreSra-bltolp)r 7Y tals)(to )

(7.15)
Bat x-f[z‘@[:akfz,-f@ f}=0=2}-[f@f}}=}[{t@£;)
2 afz-x-£x]

7 (rolz) £(r077)
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P CENTER OF ELLIPSOID

Figure 7.6 ELLIPSE IN BELT PLANE
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The choice of the sign of 7 distinguishes between the possible
tangent vectors from the anchor pownts to the ellipse. The possible belt plane
configurations are tllustrated 1n Figure 7.7. Note that if the fixed point does
not lie on the arc of contact the belts are assumed to be attached directly to

the fixed pownt as 1n (d) of Figure 7.7.

Determination of the arc length begins with the definition of a
right handed coordinate system uc, up, Tc as; uc 1s the unit vector 1n the direc-
tion of the fixed point ¢ from the center of the ellipse, Tc s the vector defining

the belt plane and ¢p=7co@uc

Let f:x{ucjfy/a/o/f,(f , be a vector from the center of
the ellipsoid to a point on the ellipse. Applying the equation of an ellipsoid
yields:

PLP=2%uc Lluc)exyuc-E(up) ry*up-Lup
%Xf-fxfrl’ (7.16)

then writing

czx,“fzéxyfcy2=1

where
- uc-Luc 5-%C Elup)
7-Xp £X, 7K Lx,
o P LY
Z-XE'[XE

(7.17)

The values of x and y are computed for the two tangent points. Denote them

as X, , ¥, then X, , ¢, and

8,4=7an ‘I/y,, /XA ) 6;4‘6-’” J/%A/ﬁ )
(7.18)

185



{a)

Fix=p Po/NT

{b)

{c)

(d)

A Solid Lines Indicate

Accepted Solutions

Figure 7.7 BELT CONFIGURATIONS
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The arc length 1s then computed by Simpson's Rule integration
using (a, b, ¢, step size and €,) as input. The Function Routine Elong per-
forms this operation. The form of the integration 1s found by considering the

following equations:

Write the equation of an ellipse:

QX2+ 282y, cytat
(7.19)
Let X=rcosé, y=rsine

Th z 1
en r= /\ch cos?0 + 2551128 cos@ + C s1n 26

(7.20)

The arc length ds is;

2
a/s-J dr % (td8)* = 46 Ir%/d%/ (7.21)

Substituting for r yields

Rl

Jrzf /d;/@)z =T ZdeCfrz(b'-c?C)T

The equation for the arc length L 1s then given by:

L=J;a'dé Jr2+ dr{@/?

The sign of L will be defined to agree with the sign of &, ,

(7.22)

The following assumptions and/or restrictions apply to the

derivation and use of the belt routine:

(1) Anchor points A and B are distinct, therefore A, B and

the fixed point on the ellipsoid are sufficient to define a plane.

(2) The fixed point lies on thearc of contact from tangent

point A to tangent point B, If the fixed point does pot lite on the
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on the contact arc, the belts are run to the fixed point and the

arc lengths are set to zero,

7.4 AIR BAG CONTACT

The airbag model 18 based on the assumption of a stretchless
bag of ellipsoidal shape which interacts with contact ellipsoids attached to
selected segments of the crash victum or the vehicle*. Each interaction of
a contact ellipsoiwd and the bag 18 treated separately by the geometry routine
which computes the decrease in volume of the bag, the effective area of the
contact and the force and torque per unit pressure, After all the contacts
have been considered the total decrease 1n volume 18 used to compute the
pressure of the gas in the bag and then the forces and torques are applied to

the various segments,

In using the airbag at least one contact ellipsoid rrust be attached
to the vehicle, This 1s called the primary reactional panel. A point 18 speci-
fied on this panel as the deployment point. At the beginning of the program
(time = 0) the bag 1s assumed to have zero volume (zero size) and 1s located
at the deployment point of the primary reaction panel, after a specified time
delay the bag 1s inflated by using the gas dynamic relations for the choked
flow of gas through a nozzle. The gas source s a high pressure tank of con-
stant volume, that the total gas which has come through the nozzle, would
occupy at atmospheric pressure. Until this computed volume plus the volume

of the intersections from the contacts reaches the geometric volume of the bag

% The contact ellipsoids attached to the vehicle which are used by the airbag
routines are distinct from the other contact ellipsoids in the program and
are referred to as reaction panels in the program comments. The loca-
tion and orientation of these panels is arbitrary.
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(when fully inflated) the bag 1s assumed to be at atmospheric pressure and
hence no forces are produced. When this volume reaches the geometric volume,
the bag 1s said to be fully inflated and the addition of more gas from the
cylinder or an increase 1in the volume of intersection will cause the pressure

i1n the bag to increase and thus produce contact forces on any segment inter-

secting the bag.

During inflation the size of the bag is determined by scaling
the semi-axes of the ellipsoid by the cube root of the volume. The center of

the bag lies on a vector which has one end at the deployment point and 1is para-
llel to the X axis of the primary reaction panel but in the minus X-direction,

and the distance 1s equal to the semi major X axis of the sealed bag from the

deployment point,

When the bag 1s fully inflated 1t 1s moved dynamically. A mass
and inertia matrix is assigned to the bag. Until fully inflated the orientation
of the bag with respect to the vehicle 1s held constant and equal to 1ts initial
orientation. The dynamic motion of the bag 1s updated by the program integrator.
An artificial spring force is applied at the end of the positive X axis of the

bag and 1s exterior to the primary reaction panel. This was done to hold the

bag to the panel.

7.4.1 Geometry of the Airbag During Inflation

The airbag geometry during the inflation process 1s 1llustrated

in Figure 7.8.
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UX AXIS OF PANEL

VEHICLE REFERENCE POINT

Figure 7.8 AIRBAG GEOMETRY DURING INFLATION

During inflation the following algorithm 1s used to compute

the center of the airbag.

Let } location of the center of the primary reaction panel with respect
to the vehicle reference

j be the location of the deployment point with respect to the center
4 of the panel

u be a unit vector in the positive X direction of the panel
Qa be the scaled semi-ax:is {X axis of the airbag)

3 be the location of the center of the airbag with respect to the
b  vehicle origin.
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Then ;b =i f}l—dax

The velocity of the c.g. of the bag is computed as the time

derivation of this expression plus the velocity of the vehicle.

It should be noted that in the present coding of the program it
is tacitly assumed that the X axis of the bag 1s parallel to the X axis of the
primary reaction panel because the above algorithm does not consider the
orientation of the bag. This assumption affects only the computation of the
artificial spring force which is used to hold the bag to the panel. The spring
forces applied only if the end of the X axis of the bag is exterior to the panel
and 18 proportional to the distance of this point from the deployment point.
Hence, if the bag X axis 18 not parallel to the X axis of the primary panel the
only error would be in the computation of a possible spring force when the bag

is moved dynamically.

The scaled semi axes of the bag are computed by the following
algorithm. Let ap bl’ S be the semi axes of the fully inflated bag as speci-
fied by input,

Then the geometric volume of the bag is

Vg = (4/3) T anlblc1

Let Vb be the instantaneous volume of the bag computed from the gas dynamic

relations.

Then //3
i = oa (Zl_a)

I TR U

g
V. \%

- b

b bl(V

g
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Z
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c = o [P
1\ V
g

are the semi axes during inflation,

The components of inertia of the bag per unit mass are com-

puted trom the relations

b =%+ s

XX 1

‘pyy (alz +c 2) /5

Pez

i
W
+
o
~
~~
W

vhich are the principle components of inertia for a thin ellipsoid (ellipsoidal
shell).

T.4.2 Dynamic Motion of the Air Bag

When the bag 1s fullv inflated the sum of the forces and torques
ict1as, on the bag are used to determine the airbag position, orientation and
voloc1ties My ointewration of the equations of motion  The bag position and
velocit 1~ updited only at the completion of a successful main progran

1nte 1ition step ind 15 held constant during the integratinn step
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7.4.3 Air Bag Contact Geometry

Figure 7.9 AIR BAG GEOMETRY

Subroutine EDEPTH computes the points of maximum penetration(i. e. //DA —/'?5/

is maximized)

2
P12 Pyf (7.257
If P 18 less than 10.6 no further computations are done, zero penetration s

assumed.

If P 1s greater than or equal to 10-6, two orthogonal planes are defined con-

taining the line from Py to PA' using subroutine ORTHO,
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In each plane the ellipsoids are replaced by circles with the same radii of

curvature as the ellipsoids,

Two cases are considered:

Case I:

The radwus of curvature of the airbag r, s greater than the

radius of curvature of the contacting ellipsond r, . Two

8
circles are constructed with a radius 1‘=/TA-T£//2 and
r
A

#T
center located adistance T = .._E._ﬁ from the centers of the
circles A and B, These circles are located such that they are

tangent to the circles r, and rg as shown in Figure 7.10.

The airbag 18 deformed to the shape described by the arc
1-2-3-4-5-6-7, This arc 1s the same length as the arc along
the circle A from 1-PA-7. This may be established by con-
sidering the angle @ 1n the figure. We have

Are B-7 = "4 P =(ryrp)20+150
5= (7.28)

The line from 2 to 6 18 tangent to the circles. Pounts 2 and 6
are the same distance from the center line as are the centers

of the tangent circles.

This distance & s

/{-"c‘g/ 2 (7.25)

The volume of revolution of a sector of a circle as shown 1n

the figure below 1s

Vs = e [2/3—605 ¢ﬂ— cos 2% )J (7.26)
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Figure 7.10 CASE I AIR BAG CONTACT GEOMETRY
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d

And the volume of a ring as below 1s

Vo=2T7ra r2[¢—51n¢> C05¢:]
(7.27)

Hence the volume of the shaded area in the figure above 1is

V=1 rA3 2/3-cosgp //-c052¢/3):]
f7rr; [27/3— cos o (7- c052¢/3)]

2
-27Tr.r sing |:¢—szzz¢ 605¢EI (7.28)

where cos ¢ = 1-Ffftyr1g)
=T. Sin¢

Y= W//r fl‘a)é rs )(] /3 4fr,9
o2 2 r)}/
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Case II:

The radwus of curvature T, 18 smaller than T g

Figure 7.11 CASE Il AIR BAG CONTACT GEOMETRY

In this case no tangent circle 18 constructed since the arc
length along the bag is greater than the arc of the contacting

surface.

Alpha, o¢ 1s computed as the distance to the point of intersec-

tion as follows:

f/r $Tg-p) /2/1;7#1"9-/) 7.30)

/d
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The volume 18

V= 77r; [2/3- cos @y (1—0052@9/3)}

f77r53 EZ/a—CoS;bB (2- coszaﬁ/gj (7.31)

Since

Cosbs=4/y,

and €05 ¢, = 1-/p,¢/6-r/;)/r5

(7.32)

It 1\s now possible to write

V= 771‘;:(2‘/5/1'/7/2/]"/1_/5/134)/3/

#ﬁiﬂ{%ﬁqw%ﬂ71ﬂ4?¢—w@ﬂﬁ)Usn

After the above computations are made 1n each plane the volume of intersecticn
1s computed as the average of the volumes of revolution obtained in each plane
and the area 1s estimated as 7 times the product of the o5 (the area of our

ellipse).

(Note: If the penetration s greater than the radius of curvature of the air-
bag n any plane the computations are done by replacing the radius of curva-
ture r, with the penetration /fg . This serves to limit the volume tn cases

of extreme penetration where the algorithm 1s probably no longer valid).

The forces on the bag and on the contacting surface are assumed
to be applied at the point /% . A friction force 1s computed which apposes
the tangential relative velocity of the two surfaces at this point using a friction
coefficient supplied by the user. A ramp function 18 used to limit the frictional

force for small relative velocities.
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7.4.4 Depth of Penetrztion for Air Bag Routines
{Subroutine EDEPTH)

The airbag routines which consider the intersection of ellip-
soid contact surfaces with an ellipsoidal airbag require the points of maxi-
Intersection 18 determined by subroutine INTERS as de-

If an intersection is detected then subroutine EDEPTH
The geometry of the

mum penetration,
sired 1n Section 7, 2.2,
is used to compute the points of maximum penetration,

ellipsoid-airbag contact 1s illustrated in Figure 7.12.

Figure 7.12 ELLIPSOID-ELLIPSOID PENETRATION

Consider ellipsoids A and B whose centers are separated by

the vector m. It s desired to find the point X on A and Y on B such that

the distance [y-X] is a maximum and represents the maximum penetra-

tion in the region of intersection of the ellipsoids.,
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At the point of maximum penetration, the vector y-X will be

»l'aned with the normals at the ellipsoids. That 1s

A Ax= y-x=-2B(y-m) (7.34)

where X-AX=1)[z/-zn)-5[y-mj=1 and ¥ and A, are negative scalars,

Eliminating x we get

[AVAB+AA+VB) (y-m JaAAm

(7.35)
Thus
y-m=-(AVAB+AA LV B) A Ame
(7.36)
If y - m 18 known x is given by
x=yrP8(y-m) (7.37)
The scalars A and 7V must be chosen such that
X-Ax=1= (y-m)-B(y-m) (7.38)

The procedure used is an iterative Newton Raphson scheme. Starting values
of A, and V are estimated., From these y - m and x may be evaluated.

The ellipsoid equations are considered as functions of A and ¥ . That 1s

F{A,%)=x-AX-1 (7.39)
and 9( AP )=(y-m ) B(y-m) - 1

Determining A,V such that f//l,lj/=y//l,7)=0

Using a Taylor series expansion yields



FIA+GA, Prdp)= FIA, )+ ;{ SAr ;}; S

) g dg
g(A#d2,9409)= g (AP T G4 Ip

(7.40)
Thus /A and 4% may be estimated from the equations
drF dr
19 G5 IV = ~FI,P)
gd/ﬁf—za"ﬂ= - //lV)
dv " ap gt
(7.41)

Replace A by A*#dL A and ¥ by 7+F7 and repeat the procedure until

\02- J_l_} are less than some test.
A 7

)

To evaluate the partials it 18 necessary to have

9% Ix 3y ay
X v 9n’ Jv

Differentiating with respect to A,p yields:

9Y (A AB 4 AA +v8) " Ax

N
a X _ ég{ dy

R MY

7 x Z

S5 VA B A+ B(y-m)

o Jx (7.42)
av ov - AA av
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and for f and g,

Jdf =2x-Adx
IA gA
I = 2x A dx
apy av
2?:2/y‘m)'ﬁd_y
aA JA
99 = 2(y-m ). B 3y
ap av

(7.43)

This completes the evaluation of the necessary derivatives.
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7.4.5 Gas Dynamuics of the Inflatable Restraint System (Airbag)

The gas dynamics model for the airbag 18 considered in separate
parts. One part consists of the gas supply model and the other part consists

of the gas dynamics of the inflating or deflating bag.

Gas Supply Model

The basic assumptions are:
(1) Perfect gas
(2) One-dimensional, quasi-steady, 1sentropic flow

(3) The flow through the nozzle 18 choked for the time duration

of interest

(4) The mean velocity of the gas 1n the supply 18 small

The mass flow per unit area tn a choked nozzle 18 given by¥
3o 1/1
EN o
& = [)?P}’(a”)
(7. 44)
where w 18 the flow in (lbs/sec 1n2)
g 18 the acceleration of gravity (m/secz)
p is the pressure (1b/m2)
Pis the density (Ib/in>)

7 1s the ratio of specific heats (—1.4)

The change in density of the constant volume supply cylinder 1s

LrP . . “CoA (7. 45)
£ V,




where

v, ts the volume of the supply (m3)
A ts the area of the throat (lnz)

CD is the discharge coefficient of the nozzle (throat)

For adiabatic flow the following relation ts valid
¥
P =r (/5 (7. 46)

where A and f, are a reference pressure and density.

The 1deal gas law 18

P = PRT = mer/v, . 47

where T 1s the temperature (°Rankine)

e

18 the gas constant (in per °Rankine)
M 1s the mass (1b)

Combtning equations (7.44) thru (7.47) and ntegrating yields,

2/3-1
£ = R/Q (7. 48)
where
£o = 18 theinitial density
Q = 1+c¢ (t-to)
C =

Co” (z_l) \/Z?E(_’:_)%t—fv (7. 49)
Yo 2 Sfo g+1

ts the time (sec) (7.50)

o
fl

and where the subscript o refers to the initial values of the respective

vartables.

We also have

21/7-1

i}

pO/Q

2
To / Q (7.50)

H
"
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Initially, the mass of air in the cylinder (mo) 18
M, =V, /5

hence the mass of air discharged into the bag Mm 18 given by

M

» Mo - Va/o

v, A (/—/7/‘) (7.52)

Gas Dynamics of the Airbag

During inflation, the volume of the bag, Vb, 18 estimated by

Vy = Vopy (1-#/7) (7. 53)
where
V = %Po
A = atmospheric pressure (7. 54)

When the calculated value of Vb 18 equal to the geometric volume

of the fully inflated bag the gauge pressure in the bag, f¢, 1s computed by

Pj = fa (ﬁ/fa)y— Pa (
7.55)

where f; 1s the density of the gas in the bag when tt was first fully
inflated (i. e. when 1ts calculated volume equalled the geometric volume at

atmospheric pressure)

Po = My/Ve
mg = mass of air i1n bag
Vb = volume of bag

The volume V,_ of the bag 1s the geometric volume minus the

b
decrease tn volume due to the contacting surfaces. The mass of gas in the
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bag 1s the mass of the gas discharged winto the bag less the mass of gas ex-

hausted through the bag exhaust orifices

M.‘ = Mcn - Moat‘

where M, 1s given by equation (7.52) and M, 18 the mass of gas exhausted.

The quantity of gas exhausted 18 estimated from the relation

L

;‘{_/‘_72‘/_{ = 0 if Py, '8 less than a specified vent pressure
Lr
L Mout = (C0A7 /z%_ TPy /7,5> if Py, exceeds vent pressure
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7.5 FORCE DEFLECTION MODEL

In this model surface contact forces are replaced by a single
force which 1s applied at a specific point and 1n a specific direction as deter-
mined by the various contact routines. The magnitude »f the normal force
18 computed as a function of a single parameter which for the ellipsoid-plane
and ellipsoid-ellipsoid contact routines 18 a measure of the maximum pene-
tration. In addition a friction force ts computed which 1s proportioned to the
normal force and 1s in such a direction as to oppose the tangential velocity.
The model does not allow for the addition of viscous or inertial forces except
as provided by the '"tnertial'’ spike described in the following or the impulse

described in section 7.7,

In the force deflection calculation, hysteresis effects are
approximated by specification of an energy absorption factor R which may be
a function of the force deflection parameter ¢ . Permanent offset may be
specified as a deflection factor G which may be a function of the parameter
d . A unique force deflection characteristic 1s assigned to each contract
hence one should specify the force deflection characteristic as representative
of the mutual properties of the contact involved. In specifying a mutual force
deflection it 18 important to remember that the parameter 4 as computed in
the program 1s a geometric property of the contact surfaces which 1s computed

as f the surfaces were not deformed during the impact.

Five functions are associated with each contact. These are:

Base Force Deflection
Inertial spike

Energy Absorption factor (R)
Deflection factor (G)

mok W

Friction Coefficient



In the current model these functions are assumed to be funct ons
of the penetration factor (force deflection parameter.) No provision s

made for variation with veloctty.

Each of these functions may be subdivided, \f desired, into

two separate parts fz (J) and fzfar/ where,

f;_ (5) 18 defined for 0 = 4, < I<d s
and

£, (§) 18 defined for S, = J < 4o

If J 1s greater than the last defined value the function s
assumed to be a constant equal to the last defined value. Each of these
functions may be any of three functional forms; a constant, tabular data,

or a fifth degree polynomial in J .

The force deflection 18 constructed in the following manner

using the first four functions

BASE + INERTIAL SPIKE (IF IT EXISTS)

FORCE

RELOAD
« UNLOAD

!
| -
fauap § REF.

Figure 7,13 FORCE DEFLECTION CURVE
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Initial loading occurs along the base curve plus the inertial
spike(need not be used.) As long as continuous loading occurs the charac-
teristic obtained will be the base plus the inertial spike. Unloading will
proceed down an unloading curve. If unloading occurs after a specified

the inertial spike 18 deleted from further calculations

elieClion 13 aCHITCVYEY,;

of the force.

o a1 U PN, L (RPN R R NPT, - S W
olnce tne prograrn uses a variavie Si€p wntegrator wnicin

may
reject a particular step and repeat the calculations for a smaller step size
it 18 not possible to detect whether loading or unloading 18 occuring by com-
paring the present J with the previous 4 . To circumvent this problem, a
complete force deflection characteristic 18 defined at the beginning of each
new integrating step and 1s retained until a successful integration step has

been achieved.

The subroutine then redefines a new force-deflection function
depending on current value of J as follows:

1. J_S_O,Ol'lfJ-TJ

) ase » Teturn to calling program.

2. If s<scuB/c , unloading s occurring, define reloading cubic:

(a)  If wnertial spike exists and (f /. ,> Z2r,., ,

"~

remove inertial spike from further consideration

(b) Set
d;“,c=m<zz/i, j@oda)
£ «
aco Cevarc
A = 5,/9 = Jc.ua./c

(c) Define new cubic /‘; )= C +C, ’ ~fw‘m)f C [J_chr 2, C;/J'J;ua/c/'a
h o )

o 2
for d&,,,. % J %5, that satisfies the following conditions
rf‘ Ay ) ~ - ) - - —~ - - s
c (d,nf/ /'5,,_,5(é,”, / /&, /aroo/c) = /‘G ( Codlc/
4 ’ r7 /
/g ./ ,"z;) = L sase ‘/{‘{"r’:’r“'/) cl e ,/C,) = /::{ \/d;ua’rcr)

(7.57)

209



by

CO = /d [J(:ﬂﬂlC)
CJ‘/:G; /Jcaa/c)

and Cz and C\3 by solving simultaneously

(d)

3. If J

2
G4 *63‘43= /‘;”[ /f,”,)—Ca—CI 4

2C,4 + ’jC3 A== Fa,;v.s[ /J/F[f}'cl
(7.58)

If local minimum of new cubic definition lies between J ,,c
and Jgsr and is negative, then replace cubic definition

a straight line between the points [ J. .’ % (fw,,c) ]
and [d:vzf’ fs.«"z ( Jur) ] by
G = /a [d;umc)

Cz '.Tf‘ [’;455 (J/?!F)' /z (JC(/J/C )]

-C,-0
2 (7.59)

t

and return to calling program.

= < . -
ve,c=d = Jeer » reloading is occurring; define new quadratic un

loading curve from cubic curve

let

and

Y27 e (J‘o)
JCUG/C é JCl-l‘/C
Aoen = [ (5)d5 ¢ [£(5)ds- [F.G)ds 7. 60)
2&(/,449 2CO Jco

and go to step number 5.

(Note: é‘co was the value of 0‘;.0‘9/6 when A /J/ was defined.)
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4. Otherwtse, J.

s <8 define new quadratic unloading curve from base

curve.
(a) Ifé‘?.a;”” , remove inertial spike from further consideration.
(b) Determine R factor and place into R .,/
If R=1, use base curve for unloading by setting
d&.woa = é;“,c prr o Gy " g0
and return to calling program.
(c) Determine G factor and place into G,

Fetch D, from input data for base function and compute
Jau»p =B +Gasr (J-DO}
Yo = Souse (4)
yz = yzf /;nert‘ul /"r/

(7.61)
1f the inertial spike exists.
d

AREA= | £, 0 (S (7. 62)

o

5. Usuing values of Y2 and AREA defined 1n etther step 3 or 4 determune

new quadratic unloading function

/Q- (é‘}'fo rq, /J‘Jaww)" gz/J' Jau:}z 6
(7.63)

for g up<d < Feyasc that satisfies the following conditions where

Jcoa/c =d
/t-? (Joww)' o
o (Lpase) Y2 (7. 64)
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JCl/d 7c

and /&v(;)d;.—@“ﬂ/ﬂﬁ:’/)
JGUAﬁ
by setting
o= 0
- 2 3 Biasr ®ARER _
£ Ocvarc = Saquan [JCoa/c ~dauro 52:1

(7.65)

If §<°, ¢, 1s set to 0 to guarantee non-negative derivative at & < fquar

and
g = ____2'_— .___iz'___— 7
5 4
2 Fevarc = Pguan Fvssc ~dayan (7. 66)
If qz <O g, = }/z to guarantee non-negative derivative

at d‘:d;u’/c J _J

cuBs/C QuAD

7.6 IMPULSE FORCES

For the first contact it 1s necessary to account for the
sudden momentum change caused by impulsive type forces. For perfectly
elastic impact an energy approach would be sufficient. For iumpacts which
are not perfectly elastic a coefficient of restitution 1s generally used to
define the force magnitude. In the literature most of the cases for which a
coefficient of restitution 1s defined are for simple one or two dimensional
problems. A more general treatment 1s given in Reference 16, but general
three dimensional results are sparse for the type of materials of interest in
the occupant crash environment. For this reason, the impulse capability

has been \ncorporated 1n the program in the following manner.

The program has the capability of making a step change in
the linear velocity, x, and the angular veloctty,w , as a result of an 1m-

pulsive force.

|9
—
[29]



The model computes accelerations from forces, and from a
computational point of view must distinguish between two types of impulses.
The first type 1s one 1n which the direction of the impulsive force 18 spect-
fied and 1ts magnitude 1s unknown, such as the force at the first instant of
contact of a body segment with a vehicle surface or with another body seg-

ment.

The second type s one in which netther the direction nor the
magnitude of the force 18 known, but a desired change in velocity 18 specified,
such as the case where a joint 1s changed from an unlocked to a locked state.
At the instant of locking, an impulsive torque must be applied which 18 suffi-
clent to reduce the relative angular velocity of the segments adjoining the

joint to zero.

For purposes of this discussion, the system equations may be

represented tn the form
e -
A=S5u
(7.67)

where 13 the generalized applied forces and torques

S 1s the system matrix

S'C 1s the resultant acceleration (linear and angular.)

Integrating from time t to t +& yields

) tré
X (t+&)-X(t)= /s i du
¢ (7.68)

Taking the limit as £ goes to zero yields

AX=55u (7. 69)

Where AX 18 the impulsive change 1n velocity and

Jdu« 18 the impulse (impulsive force. )



In the program the matrix S s not explicitly evaluated. It

1 - cmrentec farces and then solves a set of

TYPE II

A resultant velocity change 1s specified, the impulse 1s un-
known. For example, consider the case where an unlocked joint 1s locked, say
the joint connecting segments 1 and ). Determine the impulse torque vector,
t, applied at the joint which will determine AW, and 4w, such that the

resulting velocities are equal 1.e.,

W r+rAw = w +Aw
L L J J

(7.70)
The system equation 1s
AX= St = Sdu
(7.71)
where

e

= Z’
<§ (7.72)

and S 1s a 6*(number of segments)by 3 matrix then
Awy =JZC/L
=07
Auy =57 da
Where S;l are the three rows of S-1 that correspond to the AX

representing Aw; and %}1 are the three rows of S-1 that correspond to the
ax representing A w,

(7.73)

Thus



The model computes accelerations from forces, and from a
computational point of view must distinguish between two types of impulses.
The first type 18 one 1n which the direction of the impulsive force 18 speci-
fied and 1its magnitude 18 unknown, such as the force at the first wnstant of
contact of a body segment with a vehicle surface or with another body seg-

ment.

The second type 18 one 1n which neither the direction nor the
magnitude of the force 1s known, but a desired change 1n velocity 18 specified,
such as the case where a joint 1s changed from an unlocked to a locked state.
At the instant of locking, an impulsive torque must be applied which 1s suffi-
cilent to reduce the relative angular velocity of the segments adjoining the

jownt to zero.

For purposes of this discussion, the system equations may be

represented 1n the form
. .‘
F=Su
(7.67)

where «1s the generalized applied forces and torques

S s the system matrix

3.( 1s the resultant acceleration (linear and angular.)

Integrating from time t to t +& yields

) tré
X (t+E)-X(t)= [ ude
(e (7. 68)

Taking the limit as £ goes to zero yields

AX=Ss5u (7. 69)

Where AX 18 the impulsive change 1n velocity and

d«w 18 the impulse (impulsive force. )
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In the program the matrix S 1s not explicitly evaluated. It

1s implicit since the program computes forces and then solves a set of

simultaneous equations using a sequence of matrix block type operation to

obtain the acceleration.

Impulses will only be applied at the completion of a successful

integration step before proceeding to the next step. Also, the integrator 1s

reset and the step size 1s reduced to its starting value.

Consider the two types

TYPE 1

The direction of the impulse 1s known, i1ts magnitude s not

known. If more than one impulse occurs simultaneously it will

be assumed that they are decoupled so that they can be handled

sequentially by the technique developed for one. In this case

the program steps are as follows:-

Detect and 1dentify the impulse to be considered.

Call the appropriate contact routine to apply an impulsive

force of the proper direction as under a normal call. This
1s the only force applied (all other forces and gravity a-e

set to zero.)

Solve the system equations.

Interpreting the computed acceleration as step changes
in velocity per untt of force, determine the magnitude of
the force using the coefficient of restitution. The normal
component of relative velocity after the impulse at the
point of contact will be the negative of the coefficient of
restitution times the normal component of the relative

velocity before the impulse.



5. Scale the AX to the value determined in step 4 and add
them to the X in the program.

6. Repeat steps 2-5 for all impulses to be considered at
this time.

7. Make normal call to DAUX and reset integrator.

8. Proceed with normal program.

It should be noted that the impulsive force 1s applied in a di-
rection that has a component normal to the surface and a component tangent to the
surface. The tangential component is determined from the prescribed coefficient
of friction and 1s opposed to the direction of the relative tangential velocity.
Application of this type of impulse may or may not cause the direction of the
tangential velocity to reverse. The exact treatment of an impulsive contact
in three dimensions considering both linear and angular momentum 1s quite com-
plex and has not been solved (Reference 16.) It should be noted that a reversal
of relative tangential velocity is not unusual as the tennis or billiard player

is well aware.

The coefficient of restitution,as interpreted by the program 1is
the ratio of the negative of the resultant normal relative velocity after the
impulse to the normal relative velocity before the impulse. Thus a coefficient
of restitution of one (1) will reverse the normal component of the relative velo-

city while a value of zero (0) will result in a zero relative velocity after im-

pact, and a coefficient of restitution equal minus one (-1) will produce no change

in the relative velocity. No restriction is placed on the value of the coefficient

of restitution by the program (i.e. a value of +2 or -8 will be accepted.) In

normal usage, it 1s assumed that the value will be between + 1.



TYPE II

A resultant velocity change 1s specified, the impulse 1s un-
known. For example, consider the case where an unlocked joint 1is locked, say
the joint connecting segments 1 and ). Determine the impulse torque vector,
t, applied at the joint which will determine AW, and 4w, such that the
resulting velocities are equal 1.e.,

Wwrlw = A
. LAY (7.70)

The system equation 1s

AX= ‘% = 51§u
(7.71)

tx
Z = Z}
4 (7.72)

and S 1s a 6*(number of segments)by 3 matrix then

where

Zluf =J21/L
=0
Ay =57da

Where S;l are the three rows of S_l that correspond to thezﬂ)&

representing Aw; and %}l are the three rows of S-l that correspond to the

ax representing A w,

Ju=¢

(7.73)
Thus
WS da=uw +5du 78
Solving for du,
da-(5-5) (w-w,)
(7.75)
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-1 -
It 1s assumed that S1 -le has an inverse. If i1t 1s singular,

the problem cannot be solved.

The remaining ax may now be evaluated from equation (7.71).
The matrix S may be determined by repeated calls to the routine which solves the
system equations, each call produces a solution vector which is a column of S-l.
In the first call, put a unit x component of torque on segment i and a negative
unit x component of torque on segment j. The second call uses a y component and

the third a z component.

In general, in order to consider the simultaneous application of
impulses to one or more 301nts,c£; is a vector of length 3*k, where k 1s the num-
ber of joints to be considered as impulsive. S has dimension 6* NSEG by 3*k and
must be determined. There are k sets of equation (7.74). Equation (7.75) rep-

resents the solution of a 3*k by 3*k system of equations.

This development may be modified for the case where i1ts joint 1is

not completely locked in this case equation (7.70) is replaced with the equation

plw +8w)) = p (w +sw,)

where p is the appropriate projection operator;

if the joint is fully locked I, the identaty
if the joint is locked on axis h p = hhe

I-hh-

if the joint is free on axas h p

Equations (7.71) through (7.75) are modified accordingly.
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APPENDIX A
14k  WLID-BODY EQUATIONS OF MOTION

A-1 Basic Equations of General Rigid Body Motions

The dynamics of a system of rigid bodies depends upon the forces of
interaction of the bodies and upon the single-body equations of motion. These

basic rigid-body equations are summarized and derived in this section.

From Chasles' theorem (Reference 11, page 124), the general motion of
a rigid body can be expressed as a translation plus a rotation. It follows that
the complete differential equations of motion of the body are composed of a
translational equation and a rotational equation. The most general forms of
these equations are obtained when the rotational equations are expressed 1n
terms of the rigid-body rotational inertia tensor about an arbitrary point of the
body space. These most general forms are not necessary since the tensor of
rotational inertia about an arbitrary point is simply related to the tensor of
rotational inertia about the center of mass (c. m. ) of the body Accordingly, this
discussion 18 limited to the simplest forms of the equations of motion. These

equations are

: >
m ? = F (A-l)
KXY
H = N (A.2)
where
->
X = the center of mass (c. m. ) of the body
m = the total masa of the body
;I, = the angular momentum (moment of linear momentum) of
- the body about its ¢c. m.
F = the sum of all external forces applied to the body
? = the sum of the moments about the body c. m. of all forces

applied to the body plus the sum of all force couples
{torques) applied to the body.

A-1



The angular momentum about the c¢. m. 18 given by

- 6. % (A.3)

where

1]

¢ the tensor of rotational 1nertia of the body about 1ts ¢c. m.
w

the angular velocity of the body about its c. m.

Since the tensor of inertia is symmetric, 1t 18 diagonal when expressed

1n a special coordinate system, the principal-axis system of the body. In this

system, the diagonal element 4’“ of @ 1s equal to the moment of inertia of the
body about 1ts tth principal axis. Thus, the component, H., of? 1n the

direction of the (th principal axis 1s given by

where

¢_lq = ¢LL
and ¢y denotes the component of W 1n the direction of the (th principal axis.

The component, (-ljﬁl, of?m the direction of principal axis 1 of the body 1s

given bv
- I.w. - W, Wy (1, - 1) (A.4)

5 .
(H)2 and (3)3 can be obtained by cyclic permutations 1 +2, 2 + 3, 3 » 1 of the
subscripts 1n (A4)

The equations of motion in{A.]) and (A.2)are derived in the next subsection.



Derivation

Ru,n& Body

)

X}

Figure A.1 VECTORS DEFINING A POINT IN A RIGID BODY

Figure A-1- depicts the geometry of the position vectors employed 1n the
developments. The point O 18 the origin of the space-fixed (inertial) refer-
ence frame. Point C is a fixed point 1n the body which, for the present, 1s
arbitrary but which is later identified with the body ¢. m. Point p is any other
fixed points in the body. The position vector ?, which is directed from the point

C to the point p, is rigidly fixed i1n the body.

From Newton's second law of motion, the equation of motion for the

point p may be expressed
=3 -
PER =_/?‘?,¥‘)dv1 + F(F) (A 3)

-
inbh 5),R denotes the position vector of the point p relative to the origin of the

>
space-fixed coordinate system and T is as defined above. Since T umgquely
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defines the point p (when the point C has been defined), functions which depend
- %
on the position of p may be expressed as functions of r.

-
The function F(x—?) 18 the volume density at the point p of external forces

>
applied to the body. F{(r) may include discrete forces by the employment of the
formalism of Dirac delta functions. The function ?(i-;, i?l)dVl denotes the volume

density of the force exerted at the point p due to the direct action of particles 1n

1
a differential volume element dVl about a point p with position vector ‘f'l relativ
> ->
to the point C. In contrast to 1-2(1-), f(?,?l) represents the effects of internal

forces 1n the body. From Newton's third law of motion

7 2h = AL D) (A.6)

The integral 1n (45hs taken over the entire body, and dVl 18 to be expressed

1
in terms of the components of £ ina body-fixed reference frame.

From Figure Al
2 >
=X +tr (A.7)
The time derivative of(A.7)relative to the space-fixed reference frame 18

S .
=X + 7 (A.8)
It w1ll be shown that

(A.9)

_>
where W denotes the angular velocity of the body.

>, . .
* In the present context, a function of ?, such as p(r) is actually a ur_;chon
only of the components of ¥ in a body-fixed coordinate system. (¥, 7" and
and F(¥) and (D) are also functions of time.
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Let e,, {¢=1,2,3) denote orthogonal unit vectors rigidly fixed 1n the
body and €, , (¢=1,2,3) denote orthogonal umt vectors in the space-fixed
reference frame. Then

”~
e

3 .
_ 2]
Lt Z D‘J e

j=1 (A.10)

where
[ 4
J

~ ~
D,,J e;e

Since the matrix D with elements D, ; is orthogonal

i
(A.11)

r
where D denotes the transpose of D and I denotes the i1dentity matrix. From

(A1) the inverse of(A /0 is

3 T
@J = Dj. ei
S ¢=1 (A.12)
and so
r.¢ 5
rl =2 D, r
i=1

where rJ and r; denote components of ? in the space-fixed and body-fixed

systems, respectively.
Equation(4/2)may be reexpressed

r° = D‘rrb
(A.13)

where r’ and rb denote column vectors with components rj‘ and r; respectively.

> . L. : .
Since r is rigidly fixed in the body the column vector r b is time independent.
Thus, the time derivative of (A, 13) is
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.o A
r = DDr
(A.14)
Differentiating (8 /), one obtains
b+ 0= 0O
or
T . T
DD + (D) = O
So DD1s a skew symmetrix matrix. Accordingly, there exists a psuedo
-
vector W such that *
« T
Up = (WQI)
(A.15)

where i' denotes the identity tensor (or tensor idemfactor)and (W @I )
-
denotes the matrix of the tensor uef . Substituting (&/5)into (A l6)leads to

r° = (WeI r

(A.16)

Pal
Since the time derivative of c; is zero, the ve ctor equivalent of A16) is

5 > >

r -(u@I)r (A.17)
or

[
T-whe?

which agrees withA 9

* It 1s clear from(4s4)that in (AJé)and{A/5)the elements of (W1 ) must be
exoressed in the space-fixed coeordinate system. By contrast, in the relation
00 = (W@I)the elements of (W@ I) must be expressed jn the body-fixed
coordinate system. In the vector relations(A9)and(} /7)), 17, and £ may se
expressed 1n any coordinate system.
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The translational equation of motion is obtained by integrating@.s)with

respect to T over the entire body:
. -
PR av =j 22, thavlav + F
(A.18)
where
>
F - fp('r') av
(A 19)

evidently, i' is equal to the net external force applied to the body. Inﬁ./m,
dV is a volume element about the terminal point of ?. It1s to be expressed in
t rms of the components of tin the body-fixed coordinate system. From (A.ﬁ) ,

it is concluded that
//?(?,il)dv avl = o

Since p(?) is a function only of the components of T 1n the body-fixed

(A.20)

reference frame, it is to be treated as time independent in the integrand in
the left member of./8). It follows that

ﬂ(?)?dv =_c1‘°‘7 _ff(}’)ﬁdv

dt (A.21)

It is convenient to identify the point C with the c. m. of the body. Then
(see Figure A.1)

X =Lff(?)§dv
= (A.22)

where m 18 the total mass, given by

m =ff(?)dv

(A.23)



Employing(4./9 - A 22), (A.18) reduces to

m¥X=F

which agrees with{{./),

The rotational equation 18 obtained from the volume integral of the

fir st moment of{4 5)about the point C (that is, about the c.m.):

ff(i?)?@‘i?dv = f 2ot Mavlay + W
(A.24)

where

> >
N = (F@ F(f)dV

Interchanging the dummy variables ¥ and ?1 in the double integral in
(A.291t 18 concluded that

f?@?("'l)dVdv ff"’@ g2, 2)avav?
It follows from this relation and(A.6)that

/?@?(“’ Iy avav?

"

lff[r @ (22 + g ¢, Davav!

- 1f§[? 2helid yavav!

Now, 1t 1s assumed that the internal forces in the body are central forces.
Therefore 'f(?,‘fl) 18 parallel to a vector directed from the point pl to the point

p,» that is, parallel to (F -?1). From the foregoing relation

jf? @7 2yavav! = o
(A.25)



Since the vector ? 18 directed from the body c. m. to the point p, the
total angular momentum (moment of linear momentum), H, about the c.m. is

given by

i =ff(-1?) FoRav

(A.26)

Equation (A26élmay be reexpressed

- A -~
H =ﬁ Plrpr,, r3) [rl'él+r2e2 +r3e3] @R drldrzdr3
(A.27)

where r; and 2‘ are as defined above. Since(A.9:1s valid for arbitrary body-
fixed vectors 1t follows that

->»
A _ P
e = mae,_

Employing this relation, one obtains for the time derivative of (A.27)

g =/f»(?) el eRav +f}1(1?)r®21':dv

(A.28)
From(j.8)and(A.9)
ff @) (B@?) @R av =/f(?)(a'>®?)e(a§@? x ?)dv
= [3@];:(?)?&/] e ¥ =0
The vanishing of this term 1s a consequence of the relations
_/f(?)?dv - o
(A.29)

which follows from(4.22),(A 23)and(A.7. Employing(A.25).(A 27) and (A.24), (A.28)

reduces to



which agrees with(} 2).
Substituting(A 8) into (A26)and employing(}.9) results in
" =fy(}’)?e')"<'dv + fpTe (SxFav
which reduces, by virtue of(A.29)and the triple cross product expansion, to

-> >
H=9¢.W
where (A.30)

¢ - ﬁ(#)[zn -T2 av o

Equation (A.31) is the fundamental defining relation for the tensor of rotatiomnal

inertia about the c.m. It is apparent that ¢ 1s symmetric.



A.2 COMPARISON OF LAGRANGIAN AND NEWTONIAN TECHNIQUES FOR DERIVING

EQUAT IONS UF MUTJUN

This section 1s 1included for completeness so that one skilled in the
classical treatment of rigid body dynamics may fully understand the techniques
used i1n the Calspan model and realize that the resultant equations of motion
are equivalent. Understanding of this section is not essential for use of the

program.*
A.2.1 Methods

The classical treatments of holonomic constraints in rigid-body dy-
namics include the Newtonian method, the Lagrange method, and what may be termed
the independent-coordinate method. The treatment employed in the Calspan 3D

Crash-Simulation Model differs from each of the classical methods. It 1s similar
to the Newtonian method in that constraint forces are explicitly contained in the
equations of motion without the employment of Lagrange multipliers. However, 1in
contrast to the classical Newtonian method (in which explicit expressions invol-
ving the constraint forces are obtained by force-diagram analysis), the Calspan
Model employs constraint relations of the type employed in the Lagrange method.
In lieu of the employment of Lagrange multipliers, these constraint relations

are supplemented by additional relations, called compatibility relations, which

are i1nforced from Newton's third law and/or analysis of constraint-force geometry.

Since the method employed in the Calspan Model does not appear to be
documented 1n the published literature, the objective of this section 1s to show
that this method is equivalent to the Lagrange method. The first step toward

this objective 1s the proof, in the next subsection, that Lagrange-type constraint

* The classical methods do not apply to the sliding constraint as indicated in
Reference 11, page 15.



terms can be included in the Euler equations of motion. This proof is desirable

since the equations of motion employed in the Calspan Model are of the Euler

type.

In the subsection titled Equivalence Relations, the equivalence of

the Calspan method to the Lagrange method is formally demonstrated, and it is
shown that the compatibility relations which are employed in the Calspan formal.
ism can be inferred from the relations connecting the Lagrange multipliers and
the constraint forces and torques. Finally, in the subsection titled Exampl s,
the equivalence of the Calspan method to the Lagrange method is demonstrated fo:

a few simple joints.

A.2.2 Equations of Motion

The basis for the proof of equivalence given in the next subsection is
the vector form of the Euler equations of motion containing Lagrange-multipli r-

type constraint terms. These equations are first stated and then derived.

For L rigid bodies and M vector constraint relations, the equations

of motion are:

e N oy -
Me X~ = %‘_'42," + Fa (A.32)
j"—'/, "L
N M -
HE= X AL o+ N, (A.33)
m=1
L — L) - A.34)
z [A:,,‘w'l'-rB:,,'x }+Dm:0 (
L= m=/, y M
(A.35)
'} — 2
£ At By



where

-~ — 2
1aﬁ, = Ay, oA
(A.36)
— g - L L . 7 E 4 2 2
el . H =¢/u + 57 T W “}i‘f;/-,: ¢"
L2] fews (A.37)

definitions follow:

}
>

o

>

‘)K

mass of 1th body

moment of inertia of 1lth body about 1ts ith principal axas

net external force acting on lth body

net external torque acting on 1th body, about c.m. of 1lth body
constraint force acting on 1lth body due to mth constraint
constraint torque acting on lth body due to mth constraint
angular momentum of 1th body about 1ts c.m.

position vector of c.m. of 1lth body relative to origin of laboratory
coordinate system

angular velocity of 1th body about its c.m.

. . —p R .
tensor coefficient of in mth constraint relation
tensor coefficient of 5f! in mth constraint relation

coordinate-derivative-independent additive vector in mth constraint
relation

unit vector in direction of jth principal axis of 1th body

unit vector in direction of jth axis of laboratory coordinate system

alternating symbol equal to:
0 af any two of the indices 1,3,k are equal
1 1f 13k 1s an even permutation of 123

-1 if 13k 1s an odd permutation of 123
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w component of angular velocity of 1th body about its c.m., in direction
of 1th principal axis of body

A, vector Lagrange multiplier for mth constraint

- Ao g .
PN Ay €k = Lagrange multiplier corresponding to kth component
equation of mth vector constraint relation

£ —
XJ jth component of ¢ 1n laboratory coordinate system
£ a0 g 1 L. e .
Q,, . €, A, €, coefficient of w  in kth component equation of mth
4 vector constraint relation
Ad -
atnk €, + Dm additive constant in kth component equation of mth vector
constraint relation
£ 40 £ 2o s o A .
6h,kJ €, -6, € coefficient of XJ in kth component equation of mth

vector constraint relation

The equations of motion have been displayed in the vector form becaus
the constraint relations employed in the Calspan Model are inferred in vector form,
and are more compact 1in the vector notation. Even more important, the vector
forms allow flexibility in choosing optimal component representations. Component

equations corresponding to the vector equations are derived in the following dis-

cussion.

Lagrange-multiplier-type constraint terms arise most naturally from
the 1nclusion of constraint relations in Hamilton's Principle. However, the
Euler equations of motion cannot be obtained directly by the application of Ham-
1lton's Pranciple to a Lagrangian which is identified with the kinetic energy of

the system.

One way in which this difficulty can be circumvented is to obtain the
Euler equations including Lagrange-type constraint terms by direct transformation
of the Lagrange equations of motion in terms of the Euler angles., This approach

1s employed here.
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— £
:;;LW =Avn A""'
(A.36)
where
e « H = /(J/ +ZZ’U“ “Jﬁ J]‘I‘L ;
£27 femi (A.37)
definitions follow:
ﬁf( mass of 1lth body
b4
c moment of inertia of 1th body about 1ts 1th principal axas

Fy  net external force acting on 1th body
net external torque acting on lth body, about c.m. of 1th body
-ﬁ" constraint force acting on lth body due to mth constraint

m constraint torque acting on 1lth body due to mth constraint

271 angular momentum of 1th body about 1ts c.m.

x4 position vector of c.m. of 1th body relative to origin of laboratory
coordinate system
@t angular velocity of 1th body about its c.m.
£ — ¢
Al, tensor coefficient of & in mth constraint relation

3,5 tensor coefficient of ;‘-l in mth constraint relation

coordinate-derivative-independent additive vector in mth constraint

relation
- £
7 unit vector in direction of jth principal axis of 1th body
Ao
%, unit vector in direction of jth axis of laboratory coordinate system
52)K alternating symbol equal to:

0 1f any two of the indices 1i,),k are equal
1 1f 13k 1s an even permutation of 123

-1 1f 13k 1s an odd permutation of 123
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w component of angular velocity of 1th body about its c.m., in direction
of ith principal axis of body

17, vector Lagrange multiplier for mth constraint

- Ao . .
A A © €k = Lagrange multiplier corresponding to kth component
equation of mth vector constraint relation

£ —
X Jth component of x¢ in laboratory coordinate system

£ a0 8 2t I . :

A, 4 € Ay €, coefficient of w? in kth component equation of mth
/ vector constraint relation
290 e e o . .
cﬂ"k €, * bm additive constant in kth component equation of mth vector
constraint relation
£ 40 g 2o . o A .
bh,kJ €, '8, € coefficient of XJ in kth component equation of mth

vector constraint relation

The equations of motion have been displayed in the vector form because
the constraint relations employed in the Calspan Model are inferred in vector form,
and are more compact in the vector notation. Even more important, the vector
forms allow flexability in choosing optimal component representations. Component
equations corresponding to the vector equations are derived in the following dis-

cussion.

Lagrange-multiplier-type constraint terms arise most naturally from
the 1nclusion of constraint relations in Hamilton's Principle. However, the
Euler equations of motion cannot be obtained directly by the application of Ham-
1lton's Principle to a Lagrangian which is identified with the kinetic energy of

the system.

One way in which this difficulty can be circumvented is to obtain the
Euler equations including Lagrange-type constraint terms by direct transformation
of the Lagrange equations of motion in terms of the Euler angles. This approach

1s employed here.
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The starting point of the development 1s Lagrange's equations in-

cluding generalized forces and holonomic constraints. These are (Ref. 11,

page 42)
d oL dL g
_— = = 5— = A, a + Q
de  Ig, 794 %::, < “ek TR (A.38)

£=/;"'7N

Z Q 2 + Q =0 =7, --,m
G Gk PR T D r (A.39)
where the ﬁx are generalized coordinates, the Qx are generalized forces,
Equations(A.39) are the constraint relations, and the ‘XX are Lagrange multi-
pliers. In this formulation applied forces and constraints are included in

the right side of (A.38) so the Lagrangian is given by

x(?’ ) ey ?N’?l?"'?N):T(?/’""?N'fol’“'?.ﬂ)
(A.40)
where T denotes the total kinetic energy of the system expression in terms of

the generalized coordinates 8’ and coordinate derivatives Z’

The first step in the development 1s to particularize the relations
in (A.38)and (A.39) to L rigid bodies with MS holonomic constraints, and to the
coordinates of interest. The coordinates for the 1th body are the rectangular
coordinates, Xﬂ , of the body c.m. in the laboratory frame, and the Euler angles
eﬁ ¢{ ‘PP defined on page 107 of Reference 11. As indicated by Goldstein,
these coordinates are suitable for the Lagrangian formalism. For the sake of

compactness of notation it proves convenient to employ the symbols E%I defined by



)

|

()
[

s
2 = ¢£

-L

s = ¢t (A.41)

The Lagrange equations for the system may be expressed, in accord

with (A.38) and (A.39) as

d g2 X Ms £ 2
=, . 2 2 = Z: 2777 Am‘ +Fl
dt 87(( ax( maf (A.42)
t=p,40,3, =1,-47,
M
Jd s - —

4 X _ & =y a,aL. +nft
dt 36‘ J m my 4

4 ¢ maf (A.43)

L 3 - -~ .
X f;'” {a,,‘,L 5, + b z[‘} t = 0

-m:/,---,M (A.44)

3

In A.42 and A.43, Fl‘e and ﬁi‘

constraints are expressed in A.44.

denote the generalized forces. The holonomic

The kinetic energy of the system is given by.

T=L1 5 7
=z 2 L
Z-7 (A.45)

where the symbols +f R Mg and mlf are defined in the context of equation
A.37. From Reference 11, page 134, and the symbol definitions in A.41,

yi —-— 4 —_d L £ — — h
oy = 9/ cos 63 + 6, Sthn 6, Sin 63

L ~ £ — 4 = £ -2 -
&, = —6, Sen 63 + 92 s¢m 8, cos 93 >

2z =z —_ A 1 (A.46)
“Js = 62 cos 9, + 63 J
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In order to obtain the Lagrangian of equations A .42 and 4.43, 1t 1s only necessary

£

to substitute for the wl in A.45, employing A.46. It has been verified that this

procedure yields the correct Lagrangian. The substitution 1s not necessary for the

purposes of this development.

Employing the translation terms of A.45 equations A.42 become

M

oo £ S Vi A0 =

M,L /Tt' =Z ,27,7[),"1"'3,' * Fa
m=

£=r,-3 ;=140 L (A.47)

where éf’ and F~ are defined in the context of A.324

RN

The next step in the development is the reexpression of A.43 in the
Newtonian form with Lagrange-type constraint terms. From page 52 of Ref. 11,
the generalized force QJ corresponding to an angle variable qJ such that dqj

g . . A .
corresponds to an infinitesimal rotation about an axis with direction # is given

by

(A.48)
where ﬁ'denotes the applied torque about the origin point from which qJ is measured.
From page 107 of Ref. 11, d¢ is an infinitesimal rotation about a space-fixed
axis z, do is an infinitesimal rotation about the line of nodes, and d¢ 1s an
infinitesimal rotation about the body axis z'. So letting (in accord with the sym-

bolism of A.41)

éf unit vector in direction of line of nodes for 1th body

é: unit vector in direction of space-fixed axis z for 1th body

é; unit vector in direction of body axis z' for 1th body
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it follows from A.48 that, in A.43

(A.49)

under consideration,

N

97
J -
74 (A.50)

where T denotes the kinetic energy and L denotes the body angular momentum

about the origin point for measurement of qj. Since in this development T ex-
pressed 1in terms of the qj and qj is the same as the Lagrangian, it is concluded
that

(A.51)

where H? denotes the angular momentum of the lth body about its c.m.

The forms of the left member and the last term on the right in A.43
are independent of the constraint terms. It follows that, in the absence of

constraints,
d X _ L _ 4
dt Jde ¢ ag,* g
(A.52)
or employing A.49 and A.51,
V7] G- S Y D]
Y £
dt | ¢ 4 ‘ (A.53)
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But, in the absence of constraints,

dHt N
Py <
and so,
L a#” - x4 ;/'
c 27 ¢ %
(A.54)
The relations in A.53, A.54, and A.51 imply that
o 34_ ;/’1
7 et 4
I
(A.55)
and
— -2
o 7L Iz _ 21_ X
<t 76% et z Lt
o 76 (A.56)

The relations A.51, A.55 and A.56 have been verified by direct evaluations in-
volving the Euler angles and the relations in A.46. This verification 1s a

useful check on the correctness of the development.

Employing A.49 and A.56, A.43 may be reexpressed,
™

s
x4 gL <L =
- 2 A S zl + 2 N
3 &t mz] ok ,é VA
A.57
k27,0 3y £20,.., 4 (B35
The relations in A.57 and A.44 will be transformed to obtain
-vl Ms
e ° S = ] Q 24 >
Y, < Gy TG Y (A.58)
7 =12,3; £21,...,2



L 3

2 £ 4 .

CE a. Wb ozt d =
2e1 g51 | Y ”‘a;}+ 0

(A.59)

where é%ldenotes a unit vector in the direction of the jth principal axis
of the 1th body.

To simplify the symbolism during transformation the superscript 1 will
be dropped and restored later in the development. Equations A.57 and A.44

become - M
= ad# - X -
“iT T m=1 T Bt T G Y
(A.60)
3
Zz a g + 5,,, 2: + o = O
t=1 { e e ! ’} (A.61)

where in A.61 the sum over 1 has been suppressed.

The transformations of A.60 and A.61 depend upon the transformations

(¢) ~— («%) (A.62)

(&)~ (&)

droppaing the superscript 1 in A.46 and employing A.41 one obtains the trans-

(A.63)

formation

wys Lioc
T 5 %

-4
7 7

(A.64)
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where
cos ¥ St & St ¥ (7]
¢ = ~-Stm ¥ Send cosy 0
1) cos 8 /
(A.65)

The transform matrix C is nonorthogonal. The inverse of A.64 is

— -/
(A.66)
where
cc'= 1
(A.67)

The inverse C-1 is given by

and I denotes the identity matrix.

cos ¥ -7 Y o
-7
o = Sen Y cos¥ o
S 8 Se77 8
- Co5s 8 SenYy _ cosbcosy / A 68
Stn 8 St & (A.68)

It will be observed that C = is singular when 6 is an integral multiple of #
This point is discussed below.

To obtain the unit-vector transformation in (A.63), 1t 1s observed
that the angular velocity, & , is given by the relation
-~ N
w:& Cg“k

and by the relation,



The latter expression is valid since independent angular velocities
add like vectors.* Stated alternately, infinitesimal rotations can be repre-
sented by vectors, and independent infinitesimal rotations so represented can
be added like vectors whether or not the rotations occur about orthogonal ax s.
Equating the two expressions for & yields

a & wy = L oe @
& J /i 7
Substituting from A.64 and observing that the resulting relation must be valid

for arbitrary values of &, , one obtains

é_’ 2 c;e 2
A (A.69)
where (¢ denotes the transpose of C. Since
o~ - - _,
(c’) = (Z)
the inverse of A.69 1s given by
A A--’/ A
J 7 7 (A.70)

Now, 1t can be shown that the singularity of C'1 at © =0 occurs

because**

a=0

a3l
]
oM

(A.71)
This degeneracy might cause difficulty in numerical integration of A.60 in some

1solated cases.*** Such potential difficulty is not of concern in this develop-

* Rigorously speaking, angular velocity is a psuedo vector. The distinction
between pseudo vector and vector 1s not significant in this development.

*x Since the singularity of C'1 at #4=ny is similar to that at 6 =0 we ne d
consider only the latter singularity point.

*+*  The degeneracy at 6 =0 must also be present in the corresponding Lagrange
form of the Euler-angle-dependent equations from which A.60 was derived.
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ment since the objective 1s the analytic derivation of the equations in A,58

and A.59, which are not affected by the degeneracy in A.71,

To treat the singularity of C_1 at ©=0 in the transformation in A.70
it 1s only necessary to perform the transformation for & =46 and then, in the
result, pass to the limit as 4e —-© . It is clear from A.70 that the limit
exists and 1s well behaved. Consider the treatment of the singularity when
and C_l are functions of time, t. Suppose &(t) = 0 at t=t. In this case, one

can employ A.70 to evaluate é\k at time t and then pass to the limit as t-=t,

to obtain é‘,‘ at time t, . If C_l is a function of t but ¢ =0 always, one
can again evaluate é,‘ for =46 and then pass to the limit as A9 -0 . The
singularity at & =0 in the transformation in A.67 can be handled by the same

technique. With this understanding, the groundwork is complete for the trans-
formations of A.60 and A.61.

Multiplying A.60 by C'1 and summing over k yields

(G a) &Ll o

X f 4? (A.72)

-l = -
+( CE’C‘J cé)-/\/

Putting

s (A.73)
and employing A.70, A.72 reduces to
- Mg -
A A E A
o = = + & « N
J At Pty " G
(A.74)
The inverse of A.73 is
Rome = 53 f;é Zoms (A.75)



Substituting (A.75) into (A.61) yields
3 3

12;7 Y Jé:’ 6’ d"J+é’"l zz} * oy =0

Rearranging and employing (A.64) leads to the desired result
3
L W # P + &L =0

=/
4 (A.76)

Restoring the superscript 1 in (A.74) and (A.76), and the sum over 1 in (A.76)
leads to the equations of motion in (A.58) and (A.59).

It has been shown that under the transformation

L0 0t 6t

£ ;7 4 7
£ - E 71L& _ £
a,, c a
7k A A (A.77)

where CfJ is given by (A.46), the equations of motion in (A.57) and (A.44)
imply the equations of motion in (A.58} and (A.59). Since it has been shown
that, subject to the proper treatment of the singularity of C'l, the inverse

of the transformation in (A.77) exists, it is apparent that the equations of
motion in (A.58) and (A.59) imply the equations of motion in (A.57) and (A.44),
Thus the equations (A.58) and (A.59) are completely equivalent to the equations
(A.57) and (A.44), and accordingly, to the Lagrange equations in (A.44) and
(A.43). It 1s readily verified that equations (A.47), (A.58), and (A.59) are
identical, except for notation, to the component equations corresponding to the

vector equations (A.32)-(A.36).

The final step of the development 1s to express the left number of

(A.58) 1in the Euler form. Put

or %2 qu? >4
(A.78)
N Pt
7 77 7



Differentiating (A.78) with respect to t leads to

i:ié "
oLt 7 J }
AL Y
’ p, f;q;“f} (A.79)
now .
et St et
7 /!
or
Ad by L Al AL
= )
'f; L % A®$

The cross product may be expressed A
P P 2‘ ® az = Z d:é, R &
£ d ¢ 7

1s the alternating symbol defined above.* Thus

é‘,l:ﬂ.[_’,a‘ w‘é‘l
7

where 6"

(A.80)
2 A
Since é‘.ea!= gLJ (A.80) and (A.79) lead to the relation
-~ 3 3
V4 ¥4
& g4t L Wtuta,
7 ¢ Jd zer k=t ‘ (A.81)

which is identical to equation (A.37). The development of the relations

(A.32)-(A.37) is complete.

{ at
* The principal axis directions have been labelled so that e Q 3 )

This labelling is in accord with (A.46)
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A.2.3 Equivalence Relations

As mentioned above, the purpose of this subsection is the formal demon-
stration of the equivalence of the Lagrange treatment of constraints to the treat-
ment employed in the Calspan Crash-Simulation Model. No attempt is made here to
independently derive the equations employed in the Calspan Model. Rather, th se
equations are inferred analytically from the Euler equations with Lagrange-type

constraints, and then the equivalence of the two methods is proved.

The proof of equivalence hinges on the relations

*z- - ‘l
«/’n = 2,38,
(A.82)
77 = 2 - A 2 =/ ces M
7 o> ’ (A.83)
L
L -4 L =z -
A d * . =
4%; { T Bt X }+ Do = 0 (A.84)

M = ”-.-, M
which are the same as the relations (A.35), (A.36}, (A.34) of the previous
subsection. Following a discussion of the characteristics of the vector Lagrang

multipliers, 1t 1s shown that the relations (a.82)-(A.84) 1mply the compatibility

relations, which can be employed to convert the equations of motion from the
Lagrange-multiplier form to the constraint-force from employed in the Calspan
Model.

The constraint relations (see (A.84)) are expressed in the vector form
since this 1s the form employed in the Calspan Model. However, the formalisn
1s immediately applicable to scalar constraint equations (such as the torque-
type constraint relation for the universal joint - see the subsection Examples.)

To see how this 1s done, suppose the mth constraint relation is scalar. One
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can then put

agnz = Aoz = O
L Y £ s Lo / 3
a = @ - 6 = - = perc 2
and equations (A.82),(A.83), and (A.84) reduce to
A J l 40 -~
£ o= Ares PIYA , e
> ALt A
\
~2 ZJ L Al
ﬂ"‘ 1-»1/ 4»z/ &J
=’ 7
J <
. 2 A.8
EL et wtesl, 20 sa =0 (A-86)
g1 £=1 ”'/J J 7 7 m/

When, for a particular value of m, the relations (A.85) are employed with
(A.82), (A.83), and (A.84), the solutions for }*u and X,, are totally am-
biguous. These ambiguities do not affect the solutions for Ji: , Eﬁ: and

other physical quantities of interest.

There are other cases in which certain ones of the Lagrange multi-
pliers cannot be uniquely determined. A case in point is the vector Lagrange
multiplier which corresponds to the torque-type constraint for the hinge joint
(see the subsection: Examples). The lack of uniqueness of the vector Lagrange
multipliers corresponding to some vector constraint relations 1s probably due
to the presence of redundant information in these relations. The removal of
such redundancies, while unnecessary, would probably usually be desirable 1in
applications based on the employment of Lagrange multipliers.* By contrast,
in the formulation employed in the Calspan Model, the removal of such redun-
dancies i1n the constraint relations is sometimes both unnecessary and undesirable.
There 1s a twofold reason for this circumstance. First, in the Calspan formu-

lation, the direct removal of redundancies in the constraint relations would

* The removal of redundancies in the constraint relations is not absolutely
essential because ambiguities in values of the Lagrange multipliers do not
result in ambiguities in the solution for physical quantities of interest.



sometimes result in added complexity in the formulation. Second, in this
formulation, the constraint relations are supplemented by additional relations

(the compatibility relations) which usually prevent the ambiguities in ‘Z:

and ﬁ; which, in the Calspan formulation, would otherwise result from
redundancies 1in the constraint relations.* Ambiguities in the values of the
Lagrange multipliers have no effect whatever on the solution since the Lagrange

multipliers are not employed in the Calspan formulation.

The foregoing discussion provides essential background information
for the ensuing discussion on the relation between the Lagrange-multiplier
dependent formulation and the formulation employed in the Calspan Model. In
particular, in eliminating the Lagrange multipliers from the equations of
motion, 1t cannot be assumed that the transform relations in (A.82) and (A.83)
can be inverted to obtain unambiguous expressions for the vector Lagrange multi-
pliers in terms of the quantities 71:, ,If, A,f, and B,f . To determine how th:
Lagrange multipliers can be eliminated from the formulation, it is necessary to

achieve an understanding of their ultimate role in the equations of motion.**

* Some types of redundancies (such as those resulting from the inadvertent
employment of two distinct yet mathematically equivalent constraint re-
lations) could not be offset by the compatibility relations. Such redun-
dancies could result in ambiguities in the solutions for individual constraint-
force and/or constraint-torque terms, but they could not affect the solutiorns
for either the coordinate variables or the net constraint forces and torques.

** The content of the preceding two paragraphs can be better understood 1in
retrospect, after reviewing the entire development of this section.
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It will be recognized that the vector Lagrange multipliers, :ihq ,
have no physical significance;* and further, in the entire formulation, they
only appear in the relations in (A.82) and (A.83). Therefore, from the physical
and mathematical standpoint, the only value of the Lagrange multipliers lies in
what their existence in the relations (A.82) and (A.83) implies about the rela-
tionships between the quantities 7’,.,,[ s /7,,{ s B,,'f
clear that the relations in (A.82) and (A.83) can be replaced by any other re-
lations which are equivalent to (A.82) and (A.83) with regard to implications

about the relationships between the quantities Eif , Zﬁf , [Lf and /gf and which

and Ai . Accordingly, 1t 1s

imply nothing whatever except these relationships.

For reasons discussed below, the relations between the quantities

-’;’;’p nt B,:,( and A,g which are implied by (A.82) and (A.83) are called

’ ”m >
compatibility relations. As stated above, in the formulation employed 1in the

Calspan Model, the Lagrange multipliers (and, therefore, the relations (A.82)
and (A.83) are replaced by the compatibility relations. In this development,
the nature of these relations will be inferred from the theory of equations.

Two lemmas will be introduced, the first of which 1s:

Lemma 1

The equations

ey A —
R~
m:.-/,- ,M
-L _ 7T £
7, = A, A YA (A.87)

* Those 1nstances in which one or more of the vector Lagrange multipliers are

equal to constraint forces or torques are exceptions to this statement.
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= — =t
have at least one solution for the Am if and only 1if Qi and £m satisfy

the compatibilaty relations.

E0 (it g 5t
z:rmqié}m.#’” * G ”m}=0 (=7, oy N-Z
(A.88)
- ¢ - , P |
Where G;mand Cy are determinable functions of A, and &, (L1, &, m'=r M)’

I 1s equal to the rank of the matrix of the

to (A.87), and
N = GLM (A.89)
Except for the symbolism, this lemma is identical to a mathematical

criterion which 1s proved in Reference 12, page 245. The compatibility relations

in (A.88) are, except for notation, identical, to the conditions of compatibility

stated i1n the reference. They are called conditions of compatibility since, if
they are not satisfied, the system of equations in (A.88) has no solution or is

incompatible. It 1s 1in keeping with the employment of the term compatibility in

Reference 1, that the relations in (A.88) are termed compatibility relations.

P 4 -

The coefficients G%nand 42" in the compatibility relations can be
evaluated from the determinant equations given on page 245 of Ref-

erence 11. However, in the examples given 1in the last subsection of this section,
the compatibility relations are quickly obtained by analyses (or mathematical
inferences) employing relations of the type in (A.87). As stated i1n the sub-
section Methods, the compatibility relations can be inferred directly from
applications of Newton's third law and/or analyses of the constraint-force geo-
metry. Prior to the analysis presented here they were always obtained by the

latter means.

Though vector notation is employed in expressing the coefficients
-

G,,, and C;:1n (A.88), these coefficients are not always vectors. In some cases

they are (non-invariant) linear combinations of elements of temsors. In such cases,
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certain ones of the compatibility relations in (A.88) can be combined to obtain
invariant vector equations. In the examples in the last sub-section of this
section, the compatibility relations are always expressed as invariant forms

(that 1s, as invariant-scalar and vector equations.)

The satisfaction of the compatibility relations by the quantities
~§£ and iﬁf cannot be verified unless the values of these quantities are known.
But the values of these quantities cannot be obtained until the equations of mo-
tion have been completely solved. For this reason, the compatibility relations
must be regarded as constraints on the values of the quantities z:(and hd
As implied above, the compatability relations cannot introduce more information

than that which 1s inherent in the relations (A.87), which they replace.

For the sake of tidiness and vigor of exposition, it is desirable, in
the transition from the Lagrange-multiplier formulation to the formulation em-
ployed in the Calspan model, to replace the relations in (A.87) by mathematically-
equivalent relations. Since 1t cannot be claimed that the compatibility rela-
tions 1n (A.88) are completely equivalent to the relations (A.87), a complete

equivalence will be established through Lemma 2.

If the relations i1n (A.87) are solvable, they are mathematically equiv-
alent to the compatibility relations (A.88) taken in conjunction with parametric
expressions which express the general solutions of the relations (A.88) for the

quantities

In proving Lemma 2, 1t will be convenient to introduce the expression

7= Z, (140 (o2). (5. (Z2). (32)]

(A.90)

to represent the parametric form of solution of (4.114) for the 7i”1 . In

(1.90), ( Aﬁ'), ( 4:'), ( £:'), ( m:l) denote sets for L=, <, m=)

and ( oA ) = an arbitrary - parameter set d =y 3m -/ . The arbitrary

value parameters, ¢, , express the arbitrariness in the solutions X,,, of
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the relations in (A.87). If the rank, l,,of the matrix of the system (A.87)is
equal to the total number of unknowns, 3M, (the M vectors, ¥, have 3M compo-
nents) there are no arbitrary parameters, 4, , and the vectors,'i”,, are uniquely
determined. If 3M > I, there are 3M-I.parameters

To prove Lemma 2 it must be shown that, if the relations (A.87) are
solvable, then the relations (A.87) imply and are implied by the compatibility
relations (A.88) in conjunction with the solutions in (A.80).

The forward implication follows immediately from the discussion on page
245 of Reference 12.* The reverse implication follows, provided that subject to
the satisfaction of the compatibility relations, the solution for the };,, Tefp-
resented in (A.90), satisfies the equations (A.87). The discussion on page 245
of Reference 12 indicates not only steps which can be taken to obtain a general
solution, but proves (again subject to the satisfaction of the compatibility re-
lations) that the general solution so obtained does indeed satisfy the system of

equations in (A.87). Thus, Lemma 2 1s valad.

With a simple proviso, the condition of solvability of the relations
in {A.87) can be removed from the statement of Lemma 2. This proviso is in that
1t be understood that incompatibility in the relations (A.87) is equivalent to
the failure of satisfaction of the compatibilaty relations. This proviso 1s, of
course, just the statement of Lemma 1. With this proviso, 1t can be stated (w.th-
out further qualification) that the relations in (A.87) are mathematically equ.v-
alent to the compatibility relations, (A.88) taken in conjunction with the ex.

pressions (A.90) for ?;M .

* In Reference 12, arbitrariness in the solution for the unknowns 1s brought out
by showing that 3M-I.of the unknowns may have arbitrary values. Clearly, the
assignment of arbitrary values to 3M-I unknowns 1s equivalent to the intro-
duction of 3M-g.arb1trary parameters, as in the representation in (A.90)



The tiansition from the Lagrange-multiplier-dependent formulation to
the formulation employed in the Calspan Model is now obvious. In the former
formulation, the relations in (A.87) are employed. To obtain the latter formu-
lation, the relations in (A.87) are replaced by the relations in (A.88) 1n con-
junction with the relations (A.87). It 1s clear that the compatibility rela-
tions (A.90) represent the result of eliminating the Lagrange mulitpliers from
the equations of motion. Thus, in the Calspan formulation, the solutions for
the physical quantities of interest can be obtained from the equations (A.32),
(A.33), (A.34), and (A.88), and the expressions for IA in (A.90) are not needed.
The exposition and proof of the mathematical equivalence of the Calspan formu-

lation to the Lagrange multiplier-dependent formulation is now complete.

Since the constraints which are imposed by a simple joint involve
only two rigid bodies, for each value of m in the constraint relations, /yf
and Q: vanish for all but two values of 1. For the purposes of the analyses
of joints given in the next subsection, 1t 1s desirable to identify each con-
straint relation in terms of the bodies involved. To this end, the subscript

m 1n the quantities fn", 5!, ,qy, 5””? can be interpreted, not as a simple sub-

” »
script but as a triplet subscript:
7 = (k,.é, 7!) (A.gl)

In (A.91), k and 1 are labels of the interacting bodies and n denotes a particu-

lar constraint resulting from this interaction. For example,

(1,3,2)
means the second constraint relation resulting from the interaction (through a
joint) of body 1 with body 3. Clearly (k,1,n) and (1,k,n) refer to the same con-

straint.

—

1f m:(k,l,n),-%;, n? A; , B all vanish unless k # 1 and 3 1s equal

'~ bl

to k or 1. Thus, in the triplet notation, (A.82), (A.83), and (A.84) may be

re-expressed.

A-33



/9,” o +/?”'-aJ * 8 +3’~. z *Dm-a

ey — pA b 4 -

£ s = <

< 18 , A, 4. 85

> ¢ e “ -~ ¢ - Y

”n - 'zm '4»1 7 Py ’?,,, ﬁ,,,

ot = (ky £, 55) (A.92)

Since a single joint can only transmit one net constraint force and
one net constraint torque to a given body, there is, for a given joint, a maxi-
mum of two vector constraint relations. In the next subsection, the constraints

are categorized as force-type and torque-type constraints,

A 2.4 Examgles

In this subsection, the constraint relations corresponding to four
simple joints are expressed. In each example, the compatibility relations are
inferred, and the mathematical equivalence expressed in general in Lemma 1 and
Lemma 2 1s demonstrated. In the case of the hinge joint, it 1s shown that the

compatibility relations offset the effect of the redundancy in the constraint

relations.

The analyses depend only on the relations in (A.92). Since for each
constraint only two rigid bodies are involved, there 1s no loss of generality
in labeling our body by the index 1, and the other body by the index 2. The

relations 1n (A.92) can then be re-expressed.

2. T s B T = -4 -8B -z
7 i n (A.93)
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—»/ - , - z
oA, 8,5 A =2, 8, (A.94)
- - , -l :i’ /QZ

w = A A2 5 1, = ’

» k4 7 2 »? b4 »n (A.QS)

where the subscript n can be i1dentified with n in the definition of the triplet
subscript m i1n (A.91). The addative vector, Z; , has been deleted from the re-

lation (A.93) since 1t 1s zero in the cases of interest.

There are, at most, two constraints corresponding to each joint. In
the first type of constraint, which will be labeled n=1, the tensors E; and B:
are nonvanishing and they have inverses. Thus, the transforms in (A.94) can be
inverted and the constraint torques can be expressed as linear functions of the
constraint forces. This type of constraint (n=1) will be termed a force-type

constraint.

In the second type of constraint (n=2) the constraint forces vanish.

This type of constraint will be termed a torque-type constraint.
Every joint has exactly the same force-type constraint, and all joints

except the ball joint have both force-type and torque-type constraints. For this

reason, the ball joint 1s discussed first.

\'2 4.1 The Ball Joint

The basic geometry of the rigid bodies and the joint is depicted in

Figure A.2.
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body 1

Inertial Reference

Origin

Figure A.2 BASIC RIGID BODY GEOMETRY

The vector !, 1s the position vector of the joint relative to the
c.m. of body 1 and the vector E{ 1s the position vector of the same joint rela-

tive to the c.m. of body 2. From the figure

- — - -
X, 1, = X + 1

(A.96)

Since the position of the joint 1s rigidly fixed relative to both bodies, 1t is

clear that[ﬁ{, (¢=1,2 ), 1s constant, and the orientation of E (£=12) 1s

completely determined by the orientation of body £ ,(¢=/,2). The orientation of

£ (g=1%) can be determined from the relation.

Ao Py
e =
f éznélJ e,
(A.97)
Where the unit vectors éf and %fare defined in the content of equation (A.37

4
and %J denotes a direction-cosine matrix. From (A.97)
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A

Since 6 1s rigid relative to body ¢ , 1ts components, e" _’:1 , 1n the body-fixed

5

(A.98)

coordinate system are time-independent constants. Therefore, (A.98) may be em-

ployed to determine the components of I—’; 1n the space-fixed coordinate system.

The transform (A.98) can be re-expressed in compact vector notation by

introducing the vector ;;” given by

- _ Aol 7
Y —Zﬂ ¢, %
¢

(A.99)
Clearly, the vector ;’;0 1s constant. From (A.99)
— Ao —_ ~L
Qa ¢ = - ©.
substituting into (A.98)
-~ Ao _ 24 ro0 o
whence ¢ = ;Su e
— _ 4-‘ N —.o _
ry = 8§°-ry, £4=172 (A.100)
Where S¥ denotes the transpose of the tensor Slgiven by
J 3 z
X X4
Sy = 2 € S, &,
c=7 J:/
From (A.100)
-~ -1, =
r, = W dry (A.101)
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which may be re-expressed

and I denotes the identity tensor.

Differentiatang (A.96) and employing (A.101) results in

=2

— e - -z -
2 rw'er, = 2%+ wier,

(A.102)

(A.103)

(A.104)

Equation (A.104) 1s, from the foregoing discussion, a force-type constraint re-

lation. It represents the force-type constraint for all the joints discussed

in this section.

Comparing (A.

104) and (A.93), 1t 1s concluded that

:5, = I
— 2 -
- -Ier, , Af=TIer

2
= A,J "CI = —Af
> > -2 - -
= @A ; o= -1, @4,

The general solution for 3; 1s clearly

(A.105)

(A.106)



The compatibility relations are obtained by eliminating i: from the equations

(A.105) :

Py ™z
16, + -FI = 0
-~ _ = ol -2 - -2
nS =rn@f , NS = r, ®F (A.107)

clearly, in accord with Lemma 2, (A.106) in conjunction with (A.107) implies and

1s implied by (A.105).

In the formulation of the Calspan model, there are four vector un-
knowns, -—F:', %ZJ n' 7o corresponding to the ball joint. Since the compata-
bilaty relations, (4.134), in conjunction with the constraint relation, (A.104),
constitute four vector equations, the number of unknowns. In the Lagrange-multi-
plier formulation there 1s one constraint-induced unknown (namely 5; ) and our
corresponding constraint equation, (namely (A.104)). Again, the number of equations

1s equal to the number of unknowns.

The relation (A.96) 1s employed as an initial condition. In principle,
the satisfaction of (A.104) would insure the satisfaction of (A.96) for all times®
However, 1t has been found that because of accumulated computer-round-off-errors,
the employment of (A.104) in the computations does not insure the satisfaction of
(A.96) for all ¢ . For this reason, both (A.96) and (A.104) are employed 1in the
computations, but not in a redundant manner. In particular, (A.104) 1s employed
with (A.107) and the differential equations to solve for X, % and F, . (4.96) 1s
then employed to obtain xX* . This procedure insures the satisfaction of (A.96)
for all times, < . A parallel procedure 1s employed when there are more than

two bodies and more than one joint.

Since the ball joint 1s completely flexible, it has no torque-type

constraint.



A 2.4 2 The Locked Joint

The locked joint 1s a joint that has seized or frozen so that it has
zero degrees of rotational freedom. It has several uses in the Calspan Model,

including the representation of a human joint which is locked due to muscle ex-

ertion.

The force-type constraint relation for the locked joint 1s, as already
implied, the same as for the ball joint. Since the locked joint has no rotation-
al degrees of freedom, 1t forces the equality of the angular velocities of bodies

1 and 2. Therefore, the torque-type constraint for the locked joint may be ex-

pressed

—», -~
w’' = w2

(A.108)

To verify that (A.108) and (A.104) adequately describe the locked )joint, it 1s
observed that the rank of the system (A.108) and (A.104), when considered as ar
equation in the unknowns w* and X*, 1s six. Thus, (A.108) and (A.104) re-

move all six degrees of freedom in the motion of body 2 relative to the coordi-

nate system of body 1. In other words, the two bodies behave as a single rigid

body.

Comparing (A.108) and (A.93), 1t 1s concluded that

/

8, 2

8, = 0

A, =-A2=1

Thus, the constraint forces corresponding to (A.108) are zero, and (A.95) be-

comes.
~7 - -2 -
ng = Az 5 Nz = ~Az
(A.109)
Eliminating :{zresults in the compatibility relation
75; + 7if = 0
(A.110)



There are, ro1 the Calspan formulation, the two unknown constraint torques ﬁ;
and FZL These can be eliminated from the equations of motion by employing

(A.110) and (A.108)

A2 4.3 The Hinge Joint

The hinge joint has a single pin, the orientation of which can be de-
noted by the unit vector € . Since the pin 1s rigidly oriented relative to
body 1 and to body 2, 1t must rotate with each body. Therefore, in parallelism
with the relations (A.100) and (A.99), one can put

A ~/ AO
)7’ = \5' * /7/

A ~ (A.111
52. 6;’ )

>
~
I

where

~ AD A
ho = Z@L ‘h,
[

ra) A A
o _ o 2,
hz - Z e‘, 6L hl
A Ay 4

o
Clearly, 4 and 4, are constant vectors. The fundamental constraint 1s the

.

satisfaction of (A.111). From the time derivatives of the relations m (A.111),

one concludes

(A.112)
Equation (A.112) 1s the torque-type constraint relation for the hinge joint.
Comparing (A.112) and (A.93), 1t 1s concluded that
6, = 83=0, Af <-4l = 10}, (A.113)
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and the expressions for the constraint torques in (A.95) become

— — ~ 2 i A
(A.114)
clearly, (A.114) implaies
—;7.1' + ;"ZZ = O
.’7.2' . 2" = (0]
(A.115)

— A
To obtain the solution for A,, one can take the cross product of 4, and the

second of the relations (A.114):

-

I - ~ IAY
hy®n; = h,@® (A, @h,)
- A - A
= . h/' 2 h,
or rearranging
—- A -2 A Pulling
Az = h,@nz + bt Az hy (A.116)

But, (A.114) amplies that 5; 1s ambiguous to within an arbitrary multiple of
A
A, . This fact and (A.116) lead to

- A -2 A

Ay = h,@n; +ak, (arbitrary a) (A.117)
as the general solution for {

2

Substituting (A.117) into the second of the relations (A.114)

h

A —— N
nyg = (h,®@nf +ah, )eh,

4 A -.2;7\

= my = hy g hy

which reduces to an identity by virtue of the compatibility relations (A.115).

Thus, (A.115) in conjunction waith (A.117), imply (A.114)

This example 1s the first in which the solution for'i 15 ambiguous.

The ambiguity results from redundancy in the constraint relation (A.112).
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A
This relation only constralns(E;—&%)to be paralled to h , S0 the

rank of the matrix for the relation 1s two. On the other hand, the relation
corresponds to three component equations and TL has three components. In the
Lagrange-multiplier formulation, the ambiguity in 'ié could be removed by an
additional constraint such as

A, b =0

which can be satisfied within the arbitrariness of the solution in (A.117).

Turning to a consideration of the formulation in the Calspan Model,
there are two vector unknowns, ZZ and 7%, which result from the torque-type
constraint. But the rank of the matrix of the system composed of the constraint
relation (A.112) in conjunction with the compatability relations (A.115) 1is
si1x. This rank 1s the same as the rank of two non-redundant vector equations.

Therefore, the equations of motion can be solved without ambiguity.

A 2.4.4 The Universal Joint

The double-trunion universal joint has two hinge pins, of which the
axis of one 1s rigidly oriented relative to body 1, and the axis of the other 1is
rigidly oriented relative to body 2. The only rotational constraint in the
joant 1s that the two hinge pins are always perpendicular. This constraint can

be expressed by the relation

(A.118)

A

where 4, 1s a unit vector in the direction of the pin which 1s rigidly oriented

relative to body A, (/£=/2).

Relations similar to (A.111) can be introduced to express the orien-
A

A
tations of 4, and A&. Differentiating (A.118) with respect to t results in

Al /N —— IAY
h, @ hy w' = h, ® h, @ (A.119)



which 1s a scalar constraint relation. It 1s equivalent to the vector con-

straint relation

" A Y ~No

A A n —-~2
e,’ h,@h, w' = e, /7, @ /72 w (A.120)

51, = 6; = 0
A A
A; - -A; = &°h, @ hy
so (A.93) becomes
- - - Ag N P
,72, = nzz = AL ‘ C,ob, @/72

(A.121)

If ;z qols replaced by the scalar Lagrange multiplier },, , the relations (A.121)
are i1dentical to those that would be obtained from the approach which is formal-
1zed 1n (A.85) and (A.86). It 1s of academic interest that the vector 5; may oe

retained and the ambiguity removed by the supplementary relation

- AQ
rA,ee, =0
(A.122)

which restricts 5; within the range of the general solution of (A.121) for 11;
Since (A.122) has a rank of two and (2.119) has a rank of one, these two re-

lations do indeed remove ambiguities 1in 3; in the solution of the equations of

motion.
The equations (A.121) amply the compatibility relations.
-77; + 77.; =0

-— A Fal
ng x (hy x hg) =0 (A.123)

The general solution to (A.121) for'il1s

—-y A -0
— nz (hl ® hZ ei - A0
T S (A.124)
h, © hy




where a 1s arbitrary. To prove this, (A.124) 1s substituted into (A.121). The

resulting relation

3>

Az - (

|4,

@2)
b4 2 A

"~ 2 <hl®;\71)
hy|

®

1s implied by (A.123). Thus (A.124) and (A.123) imply (A.121). It will be ob-
served that the expression {A.124) can be simplified since, from (A.118),

A A

I h o h | = 1

In the Calspan formulation, the torque-type constraint in (A.119)} leads
— ] —
to two unknown constraint torques, /7, and k;z. Since (A.119) has a rank of one,
and the total rank of the relations (A.123) 1s five, the equations of motion can

be solved unambiguously.
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